Antpedia LOGO WIKI资讯

MEMS振荡器的介绍

MEMS振荡器是指通过微机电系统制作出的一种可编程的硅振荡器。中文名 MEMS振荡器 外文名 MEMS oscillator介绍MEMS振荡器是指通过微机电系统制作出的一种可编程的硅振荡器,属于我们通常所说的有源晶振。它是对传统石英晶振产品的一个升级更新换代,防震效果是前者的25倍,具有不受振动影响、不易碎的特点。MEMS振荡器的温度稳定性也比传统晶振更好,不受环境温度高低变化的影响。原理传统的石英振荡器是由压电石英加上简单的起振芯片和金属封装组成的,其生产工艺包括:石英切割镀银、购买基座、起振芯片,以及将石英及芯片以特殊黏胶结合后至于基座上,然后充填氮气,用金属封装进行密封。而不同频率、不同工作电压振荡器的产生,则是由石英的不同形状、镀银厚度及所佩的起振芯片所决定。所以,从生产工艺角度,石英产业是一个人工密集型的半自动化传统产业,其产品也受到传统原材料和工艺的限制:1. 复杂的生产程序导致供货期的拖长及缺货应急困难的现象;2.......阅读全文

石英晶体振荡器与全硅MEMS振荡器的特性比较

在构建各种电子设备及通信系统设备等过程中,振荡器作为信号源,其选择十分重要,将直接影响系统本身的性能。本次对以下两种振荡器用于基准信号源时的必要特性进行实际测试,通过性能比较进行说明:1、石英晶体单元为波源的基波振荡器;2、以硅谐振单元为波源且使用锁相环( PLL)的全硅 MEMS 振荡器。振荡器的

MEMS振荡器与传统石英晶振的区别

Sitime全硅MEMS振荡器的实现原理完全不同于以往的石英晶振,因此它可以克服现有石英晶振的很多先天劣势。Sitime全硅MEMS振荡器与传统石英晶振的比较,有哪些优势呢?采用全硅MEMS技术所带来的优势:1、体积优势石英晶振的振荡频率受石英晶体的体积所限,而要切割微小体积的石英晶体非常困难,且石

MEMS振荡器的特点

特点与传统石英相比,全硅MEMS振荡器不管从生产工艺还是组件设计结构上,都更符合现代电子产品的标准,也是对传统石英产品的升级换代。* 高性能模拟温补技术使全硅MEMS振荡器具有优秀的全温频率稳定性,彻底解除温飘问题;* 可编程的平台为系统设计和缩短新产品开发周期提供必要的灵活性;* 完善的半导体生产

MEMS振荡器技术及其应用研究

随着电子系统小型化、集成化的速度不断加快,对小型化、可集成的高性能振荡器的研究成为热点。而MEMS谐振器以其高Q值、可集成、抗冲击性好等优点,为研制出小型化、可集成的高性能振荡器提供了可能。由于MEMS谐振器的动态阻抗和Q值对MEMS振荡器的设计与性能有着重要的影响,本文以得到低动态阻抗和高Q值ME

研究人员制备成功RF MEMS振荡器

  中国科学院半导体研究所半导体集成技术工程研究中心,在自然科学基金、中科院项目的支持下,经过努力探索,制备成功RF MEMS振荡器。   基于微纳谐振器的MEMS振荡器,具有高频、高品质因子(>103),可与IC电路在同一芯片集成,实现系统小型化,在军民两用高技术领域具有非常广泛的应用。

MEMS振荡器的目标

目标MEMS振荡器可以利用现有硅半导体行业所使用的制造技术和设备,让半导体行业能在代工环境中集成MEMS。Sitime公司将以MEMSFirst技术进入时钟管理器件市场,下一代集成度更高的解决方案将包括MEMS振荡器和在同一硅晶圆上制造的超大规模集成电路控制功能。Sitime公司已与Jazz半导体公

半导体所在微机电射频谐振器件研究方面取得系列进展

  在科技部和中国科学院的大力支持下,半导体研究所集成技术工程研究中心相关课题组多年来致力于射频谐振器件以及相关的测试表征系统的研制工作,在谐振器构型、微纳加工工艺、器件测试方法研究和测试系统组建等方面取得了系列科研进展。   微机电系统(MEMS)是指利用微纳加工技术制作的、同时具有机

2021年全球MEMS传感器市场规模将达396.9亿美元

  MEMS 传感器是随着纳米技术的发展而兴起的新型传感器,具有很多新的特性,相对传统传感器其具有更大的优势。在追求微型化的当代,其具有良好的发展前景,必将受到各个国家越来越多的重视。  MEMS 传感器历经四次商业化浪潮  MEMS 传感器的发展离不开MEMS 技术商业化的推动。1987 年,美国

mems振荡器到底是不是传感器?

电路当中,实现分频比较容易,倍频的话,就会产生噪声,所以MENS硅在高速通信系统中无法使用。石英振荡器振荡的频率源来自石英,石英可以产生压电效应,是一种高值元件,振荡频率非常稳定,但是,如果同样对这样的频率进行倍频,也会产生噪声,总之,倍频会产生更多的噪音,更何况硅谐振源本身与石英振荡源比较,还是稍

2014年国际压电和声波理论及器件应用研讨会在京召开

  由IEEE UFFC分会、中国声学学会、中国力学学会发起的,由中国科学院声学研究所和北京交通大学主办,宁波大学协办的2014年国际压电和声波理论及器件应用研讨会(SPADWA 2014)于10月30日至11月2日在北京召开。会议邀请了9位国内外压电和声波领域专家做大会报告,并邀请了6位产业界及学

压电MEMS超声波换能器设计(一)

本文为OnScale与Mentor合作推出,由行业专家撰写,文章详细介绍了压电MEMS超声波换能器产品的设计过程,包括传感器的仿真、设计以及它与整个系统的集成。了解系统我们正在开发一种槽罐液位监测系统。该系统可以安装在啤酒厂、酿酒厂和其他饮料厂的物联网边缘设备中,用以收集液位的状态,并可主动通知技术

恩德斯豪斯、豪瑟E+H液位开关常见原理

  威斯特(上海)传感器仪表有限公司具有良好的市场信誉,专业的销售和技术服务团队,凭着多年的经营经验,熟悉并了解市场行情,赢得了国内外厂商的支持。本公司已成为众大中小企业的固定供应商及国内贸易合作伙伴,至于成为行业之中的公司。  接下来为大家带来液位开关常见原理:  液位开关  洗衣机是全球范围内广

莫伯雷液位开关SMN1大量库存价优

  洗衣机是全球范围内广泛使用的白色家电产品。近些年来,随着水资源的紧缺以及市场对家电产品节能、环保性能要求的提高,特别是欧洲、北美地区对于家电产品节水指标已经进入立法程序,良好的节水性能已经成为了新一代智能、绿色洗衣机的重要技术发展趋势。   节水的技术核心是要控制洗衣机筒中的水量,也意味着首先

新型的硅深刻蚀技术

  牛津仪器发布了名为PlasmaPro® Estrelas100的硅深刻蚀技术,该技术提供了工业级的领先工艺性能,可以为微机电系统(MEMS)市场提供极为灵活的解决方案。   考虑到研发领域的需要,PlasmaPro® Estrelas100提供了极致的工艺灵活性。因为硬件的设计考虑到了

贺德克液位开关ENS系列的工作原理

  贺德克液位开关ENS3000系列,可选地带有集成的温度测量和/或模拟输出,用于介质罐中的液位测量。根据为填充水平或温度设置的切换参数切换输出。   贺德克液位开关从形式上主要分为接触式和非接触式。常用的非接触式开关有电容式液位开关,接触式的浮球式液位开关应用广泛。电极式液位开关,电子式液位开关

液位开关的常见原理介绍

   节水的技术核心是要**控制洗衣机筒中的水量,也意味着首先需要**地测量液位高度。    在大多数的洗衣机设计中,(液位开关)液位测量是通过机械触电开关或是压控的LC振荡器(依靠控制器检测振荡频率的变化以感知液位高度)。    根据敏芯微电子设计人员反复试验与长期测量,大量数据表明上述两种方

晶振与晶体的区别与参数详解(一)

  文章为大家详细介绍了晶振与晶体的参数。  1.晶振与晶体的区别  1) 晶振是有源晶振的简称,又叫振荡器。英文名称是oscillator。晶体则是无源晶振的简称,也叫谐振器。英文名称是crystal。  2) 无源晶振(晶体)一般是直插两个脚的无极性元件,需要借助时钟电路才能产生振荡信号

毫米波与太赫兹技术

今日推荐文章作者为东南大学毫米波国家重点实验室主任、IEEE Fellow 著名毫米波专家洪伟教授,本文选自《毫米波与太赫兹技术》,发表于《中国科学: 信息科学》2016 年第46卷第8 期——《信息科学与技术若干前沿问题评述专刊》,射频百花潭配图。引言随着对电磁波谱的不断探索, 人类对电子学和光学

毫米波与太赫兹技术(三)

1.3 窄带太赫兹连续波源窄带太赫兹辐射源的目标是产生连续的线宽很窄的太赫兹波。常用的方法包括:a) 利用电子学器件设计振荡器,尤其是以亚毫米波振荡器为基础,提高振荡器的工作频率,以设计实现适合太赫兹频段的振荡器。由于这一特点,目前报道的太赫兹源的工作频率主要集中在较低的太赫兹频段。但是,在此基

用于雷达的新型真空电子器件(四)

诺格公司在2016年还首次将行波管工作频率提高到1 THz[41]。该行波管采用深反应离子刻蚀加工的折叠波导慢波结构,在表面电镀铜以降低太赫兹波的传输损耗,折叠波导电路如图 23所示。利用VDI公司的倍频源作为行波管的激励,测试图如图 24所示。固态倍频源最大输出功率0.7 mW。工作电压12 kV

用于雷达的新型真空电子器件(三)

4 太赫兹真空电子器件太赫兹波由于具有频率高、宽带宽、波束窄等特点,使得其在雷达探测领域具有重大的应用潜力。频率高意味着具有较高的多普勒带宽,具有良好的多普勒分辨力,测速精度更高;由于太赫兹波对目标形状细节敏感,因而具有很好的反隐身功能;在相同天线孔径下,太赫兹波束更窄,具有极高的空间分辨力,跟踪精

激光雷达的七大分类有哪些?

激光雷达是集激光、全球定位系统(GPS)、和IMU(惯性测量装置)三种技术于一身的系统,相比普通雷达,激光雷达具有分辨率高,隐蔽性好、抗干扰能力更强等优势。随着科技的不断发展,激光雷达的应用越来越广泛,在机器人、无人驾驶、无人车等领域都能看到它的身影,有需求必然会有市场,随着激光雷达需求的不断增大,