生物芯片(DNA微阵列)荧光扫描仪中的激光共聚焦扫描技术
所有的微阵列上的荧光须经荧光扫描装置来分析其上的荧光强度和分布,在这些装置中,激光共聚焦扫描仪具有优越的性能,能获取高质量的图像和数据,本文将分别介绍微阵列的相关特性和各种类型的微阵列扫描仪,激光共聚焦扫描仪的设计和关键特性,另外还将介绍一种已商品化的激光共聚焦荧光扫描装置。 微阵列是由分子整齐排列于固相表面,这些分子与荧光分子结合,测定荧光分子的强度后可推知结合分子的浓度。固相部分主要有经过表面化学处理的玻璃片如22mmχ75mm的载玻片。在微阵列上包被的分子常常能与多种荧光探针通过化学键相互作用而联结,通常情况下能联结两种荧光分子,例如在检测不同样品的基因表达的区别时,可将其中一样品(如正常组织)标记上发绿光的荧光分子,将另一种样品如肿瘤组织或发病组织标记上另一种发红光的荧光分子,用两种波长的激光激发微阵列上的样品,通过比较两种荧光在微阵列上某点的比例得知某类基因在两种组织中的差异。 微阵列上有......阅读全文
激光扫描仪的工作原理
LAZER 200激光扫描仪独特的升降桥结构使整个系统更为紧凑,可在200x200x100 mm (8x8x4")的测量范围内任意位置扫描检测。同轴的视频成像系统用来定位工件特征、设置基准、选择激光扫描的起始点和结束点。白色LED照明增加表面 光源强度,同时轮廓光帮助定位工件边缘。激光扫描与影像
激光扫描仪的工作原理
LAZER 200激光扫描仪独特的升降桥结构使整个系统更为紧凑,可在200x200x100 mm (8x8x4")的测量范围内任意位置扫描检测。同轴的视频成像系统用来定位工件特征、设置基准、选择激光扫描的起始点和结束点。白色LED照明增加表面 光源强度,同时轮廓光帮助定位工件边缘。激光扫描与影像
激光扫描仪的工作原理
LAZER 200激光扫描仪独特的升降桥结构使整个系统更为紧凑,可在200x200x100 mm (8x8x4")的测量范围内任意位置扫描检测。同轴的视频成像系统用来定位工件特征、设置基准、选择激光扫描的起始点和结束点。白色LED照明增加表面 光源强度,同时轮廓光帮助定位工件边缘。激光扫描与影像
DNA微阵列技术特点
DNA微阵列技术最突出的特点就是可一次性检测多种样品,获得多种基因的差别表达图谱,已成功地运用cDNA微阵列同时检测l万多个基因的表达。因此,DNA微阵列是对不同材料中的多个基因表达模式进行平行对比分析的一种高产出的、新的基因分析方法。与传统研究基因差异表达的方法相比,它具有微型化、快速、准确、灵敏
DNA微阵列技术的技术特点
DNA微阵列技术最突出的特点就是可一次性检测多种样品,获得多种基因的差别表达图谱,已成功地运用cDNA微阵列同时检测l万多个基因的表达。因此,DNA微阵列是对不同材料中的多个基因表达模式进行平行对比分析的一种高产出的、新的基因分析方法。与传统研究基因差异表达的方法相比,它具有微型化、快速、准确、灵敏
DNA微阵列技术的应用
一 检测基因表达水平及识别基因序列。Schena等1996年用拟南芥光调基因微阵列,以不同器官中的mRNA为探针,检测其基因表达水平,结果表明叶mRNA的表达水平是根的500倍。Shelon等1996年将酿酒酵母基因组DNA克隆制成微阵列,用6条最大染色体和10条最小染色体DNA探针分别标记上红,绿
DNA微阵列技术的应用
一、检测表达状况,发现新基因。 Wodicka1997年将覆盖酵母基因组全部ORF的26万种25mer探针,阵列于4张玻片,每张6.5万个探针,将酵母分加富和低限两组培养,研究不同生长条件下基因表达水平,结果表明90%的基因在两种条件下均表达,36种mRNA更多地在加富培养下表达,140种mR
DNA微阵列技术的特点
DNA微阵列技术最突出的特点就是可一次性检测多种样品,获得多种基因的差别表达图谱,已成功地运用cDNA微阵列同时检测l万多个基因的表达。因此,DNA微阵列是对不同材料中的多个基因表达模式进行平行对比分析的一种高产出的、新的基因分析方法。与传统研究基因差异表达的方法相比,它具有微型化、快速、准确、灵敏
激光扫描共聚焦荧光显微镜简介
激光扫描共聚焦荧光显微镜(laser scanning confocal microscopy,LSCM)是一种利用计算机、激光和图像处理技术获得生物样品三维数据、目前最先进的分子细胞生物学的分析仪器。主要用于观察活细胞结构及特定分子、离子的生物学变化,定量分析,以及实时定量测定等。
激光扫描共聚焦荧光显微镜的缺点
标记染料的光漂白:为了获得足够的信噪比必须提高激光的强度;而高强度的激光会使染料在连续扫描过程中迅速褪色。 光毒作用:在激光照射下,许多荧光染料分子会产生单态氧或自由基等细胞毒素。限制扫描时间、激发光强度,以保持样品的活性。
激光扫描共聚焦荧光显微镜的优点
激光扫描共聚焦荧光显微镜相对普通荧光显微镜的优点 (1):LSCM的图象是以电信号的形式记录下来的,所以可以采用各种模拟的和数字的电子技术进行图象处理:(2)LSCM利用共聚焦系统有效的排除了焦点以外的光信号干扰,提高了分辨率,显著改善了视野的广度和深度,使无损伤的光学切片成为可能,达到了三维
激光扫描共聚焦荧光显微镜的缺点
标记染料的光漂白:为了获得足够的信噪比必须提高激光的强度;而高强度的激光会使染料在连续扫描过程中迅速褪色。 光毒作用:在激光照射下,许多荧光染料分子会产生单态氧或自由基等细胞毒素。限制扫描时间、激发光强度,以保持样品的活性。
手持激光扫描仪的相关介绍
手持激光扫描仪透过上述的三角形测距法建构出3D图形:透过手持式设备,对待测物发射出激光光点或线性激光光。以两个或两个以上的侦测器(电耦组件或位置感测组件)测量待测物的表面到手持激光产品的距离,通常还需要借助特定引用点-通常是具黏性、可反射的贴片-用来当作扫描仪在空间中定位及校准使用。这些扫描仪获
激光扫描共聚焦荧光显微镜的常用激光器
激光扫描共聚焦显微镜使用的激光光源有单激光和多激光系统,常用的激光器包括以下三种类型: 半导体激光器:405nm(近紫外谱线) 氩离子激光器:457nm、477nm、488nm、514nm(蓝绿光) 氦氖激光器:543nm(绿光-氦氖绿激光器)633nm (红光—氦氖红激光器) UV激光
激光共聚焦扫描仪都可以用什么方法来提高扫描的速度
v普通的激光共聚焦显微镜,使用的是通过电动部件转动扫描头中的镜片,通过镜片的角度来实现全面的扫描,扫描速度较低。现在的激光共聚焦扫描仪通过共振头和碟片来进行扫描,每秒高达上百张。其中共振头和碟片对比起来,碟片的分辨率要比共针头的低。
基因芯片的必备知识和操作流程
基因芯片 技术的诞生为生物技术工作人员打开了一道科研的便利之门,曾被评为1998年年度十大科技进展之一。本文对基因芯片的实验原理、技术基础、分类、用途、操作主要环节等内容做详细的介绍。 1.基本原理和技术基础 基因芯片以DNA杂交 为基本原理,基于A和T、G和C的互补关系。它是在探针
基因芯片的必备知识和操作流程
基因芯片 技术的诞生为生物技术工作人员打开了一道科研的便利之门,曾被评为1998年年度十大科技进展之一。本文对基因芯片的实验原理、技术基础、分类、用途、操作主要环节等内容做详细的介绍。 1.基本原理和技术基础 基因芯片以DNA杂交 为基本原理,基于A和T、G和C的互补关系。它是在探针的基础上
生物芯片入门(五):应用
基因芯片技术及其研究现状和应用前景生物芯片技术是随着“人类基因组计划”(human genome project,HGP)的进展而发展起来的,它是90年代中期以来影响最深远的重大科技进展之一,它融微电子学、生物学、物理学、化学、计算机科学为一体的高度交叉的新技术,具有重大的基础研究价值,又具
激光扫描共聚焦显微镜对组织和细胞中的定量荧光测定
激光扫描共聚焦显微镜可以从固定和荧光染色的标本以单波长、双波长或多波长模式,对单标记或多标记的细胞及组织标本的共聚焦荧光进行数据采集和定量分析,同时还可以利用沿纵轴上移动标本进行多个光学切片的叠加, 形成组织或细胞中荧光标记结构的总体图像,以显示荧光在形态结构上的精确定位。 常用于原位分子杂交、
使用激光扫描共聚焦显微镜组织和细胞中的定量荧光测定
激光扫描共聚焦显微镜可以从固定和荧光染色的标本以单波长、双波长或多波长模式,对单标记或多标记的细胞及组织标本的共聚焦荧光进行数据采集和定量分析,同时还可以利用沿纵轴上移动标本进行多个光学切片的叠加, 形成组织或细胞中荧光标记结构的总体图像,以显示荧光在形态结构上的精确定位。 常用于原位分子杂交、肿瘤
激光扫描共聚焦显微镜应用组织和细胞中的定量荧光测定
激光扫描共聚焦显微镜可以从固定和荧光染色的标本以单波长、双波长或多波长模式,对单标记或多标记的细胞及组织标本的共聚焦荧光进行数据采集和定量分析,同时还可以利用沿纵轴上移动标本进行多个光学切片的叠加, 形成组织或细胞中荧光标记结构的总体图像,以显示荧光在形态结构上的精确定位。 常用于原位分子杂交、肿瘤
激光扫描共聚焦显微镜技术原理
光学显微镜作为细胞生物学的研究工具,可以分辨出小于其照明光源波长一半的细胞结构。随着光学、视频、计算机等技术飞速发展而诞生的激光扫描共聚焦显微镜 (Laser Scanning Confocal Microscope,LSCM),则使现代显微镜有能力研究和分析细胞在变化过程中的结构。特别是
概述DNA微阵列技术的应用
一 、检测基因表达水平及识别基因序列。 Schena等1996年用拟南芥光调基因微阵列,以不同器官中的mRNA为探针,检测其基因表达水平,结果表明叶mRNA的表达水平是根的500倍。Shelon等1996年将酿酒酵母基因组DNA克隆制成微阵列,用6条最大染色体和10条最小染色体DNA探针分别标
DNA微阵列技术的主要流程
①芯片的制备:DNA芯片的制备方法有光引导原位合成法、化学喷射法、接触式点涂法、原位DNA控制合成、非接触微机械印刷法TOPSPOT和软光刻复制等。已能将40万种不同的DNA分子放在1 cm2的芯片上。②样品的制备:包括样品DNA或RNA的分离提纯和用PCR技术对靶基因片段扩增以及对靶基因标记。③杂
DNA微阵列技术的主要流程
①芯片的制备:DNA芯片的制备方法有光引导原位合成法、化学喷射法、接触式点涂法、原位DNA控制合成、非接触微机械印刷法TOPSPOT和软光刻复制等。已能将40万种不同的DNA分子放在1 cm2的芯片上。②样品的制备:包括样品DNA或RNA的分离提纯和用PCR技术对靶基因片段扩增以及对靶基因标记。③杂
蛋白质芯片的原理、分类及一般操作步骤(一)
概述 蛋白质芯片亦被称为蛋白质微阵列, 蛋白芯片的技术最早由Roger Ekin在上世纪80年代就已提出,它是将大量蛋白质分子按预先设置的排列固定于一种载体表面形成微阵列, 根据蛋白质分子间特异性结合的原理, 构建微流体生物化学分析系统, 以实现对生物蛋白分子准确、快速、大信息量的检测, 是
金标纳米粒子应用于生物芯片研究获进展
近日,中国科学院长春应用化学研究所王振新课题组在金标纳米粒子的生物芯片应用研究方面取得重要进展,相关成果发表在美国《分析化学》和荷兰《生物传感器和生物电子》上。 生物芯片技术是上世纪90年代以来发展起来的一种高通量分析技术,在过去的十多年中,DNA生物芯片获得了空前发展,被广泛应用到基因组
共聚焦激光扫描显微镜的应用及荧光探针
一、LSCM常用的检测内容及其荧光探针 LSCM检测内容和应用范围非常广泛,以下仅简单介绍LSCM常用的检测内容及其荧光探针。 1.细胞内游离钙 共聚焦激光扫描显微镜常用的有Fluo-3、Rhod-1、Indo-1、Fura-2等,前两者为单波长激光探针,利用其单波长激发特点可直接测量细胞内Ca
激光扫描共聚焦荧光显微镜的历史发展
·1957年,Marvin Minsky提出了共聚焦显微镜技术的某些基本原理,获得了美国的ZL。 ·1967年,Egger和Petran成功地应用共聚焦显微镜产生了一个光学横断面。 ·1977年,Sheppard和Wilson首次描述了光与被照明物体的原子之间的非线性关系和激光扫描器的拉曼光
激光扫描共聚焦荧光显微镜的辅助设备
风冷、水冷冷却系统及稳压电源。 激光扫描共聚焦显微镜的基本工作原理是首先由激光器发射的一定波长的激发光,光线经放大后通过扫描器内的照明针孔光栏形成点光源,由物镜聚焦于样品的焦平面上,样品上相应的被照射点受激发而发射出的荧光,通过检测孔光栏后,到达检测器,并成像于计算机监视屏上。这样由焦平面上样