激光扫描共聚焦荧光显微镜的缺点

标记染料的光漂白:为了获得足够的信噪比必须提高激光的强度;而高强度的激光会使染料在连续扫描过程中迅速褪色。 光毒作用:在激光照射下,许多荧光染料分子会产生单态氧或自由基等细胞毒素。限制扫描时间、激发光强度,以保持样品的活性。......阅读全文

激光扫描共聚焦荧光显微镜的缺点

  标记染料的光漂白:为了获得足够的信噪比必须提高激光的强度;而高强度的激光会使染料在连续扫描过程中迅速褪色。  光毒作用:在激光照射下,许多荧光染料分子会产生单态氧或自由基等细胞毒素。限制扫描时间、激发光强度,以保持样品的活性。

激光扫描共聚焦荧光显微镜的缺点

  标记染料的光漂白:为了获得足够的信噪比必须提高激光的强度;而高强度的激光会使染料在连续扫描过程中迅速褪色。  光毒作用:在激光照射下,许多荧光染料分子会产生单态氧或自由基等细胞毒素。限制扫描时间、激发光强度,以保持样品的活性。

共激光扫描共聚焦显微镜

共激光扫描共聚焦显微镜(Laser scanning confocal microscope,LSCM)是一种先进的分子生物学和细胞生物学研究仪器。它在荧光显微镜成像的基础上加装激光扫描装置,结合数据化图像处理技术,采集组织和细胞内荧光标记图像,在亚细胞水平观察钙等离子水平的变化,并结合电生理等技术

激光扫描共聚焦荧光显微镜简介

  激光扫描共聚焦荧光显微镜(laser scanning confocal microscopy,LSCM)是一种利用计算机、激光和图像处理技术获得生物样品三维数据、目前最先进的分子细胞生物学的分析仪器。主要用于观察活细胞结构及特定分子、离子的生物学变化,定量分析,以及实时定量测定等。

激光扫描共聚焦荧光显微镜的优点

  激光扫描共聚焦荧光显微镜相对普通荧光显微镜的优点  (1):LSCM的图象是以电信号的形式记录下来的,所以可以采用各种模拟的和数字的电子技术进行图象处理:(2)LSCM利用共聚焦系统有效的排除了焦点以外的光信号干扰,提高了分辨率,显著改善了视野的广度和深度,使无损伤的光学切片成为可能,达到了三维

激光扫描共聚焦荧光显微镜的常用激光器

  激光扫描共聚焦显微镜使用的激光光源有单激光和多激光系统,常用的激光器包括以下三种类型:  半导体激光器:405nm(近紫外谱线)  氩离子激光器:457nm、477nm、488nm、514nm(蓝绿光)  氦氖激光器:543nm(绿光-氦氖绿激光器)633nm (红光—氦氖红激光器)  UV激光

激光扫描共聚焦荧光显微镜的辅助设备

  风冷、水冷冷却系统及稳压电源。  激光扫描共聚焦显微镜的基本工作原理是首先由激光器发射的一定波长的激发光,光线经放大后通过扫描器内的照明针孔光栏形成点光源,由物镜聚焦于样品的焦平面上,样品上相应的被照射点受激发而发射出的荧光,通过检测孔光栏后,到达检测器,并成像于计算机监视屏上。这样由焦平面上样

激光扫描共聚焦荧光显微镜的样品要求

  1,样品经荧光探针标记;  2,固定的或活的组织;  3,固定的或活的贴壁培养细胞应培养在Confocal专用小培养皿或盖玻片上;  4,悬浮细胞,甩片或滴片后,用盖玻片封片;  5,载玻片厚度应在0.8~1.2mm之间,盖玻片应光洁,厚度在0.17mm左右  6,标本不能太厚,如太厚激发光大部

激光扫描共聚焦荧光显微镜的历史发展

  ·1957年,Marvin Minsky提出了共聚焦显微镜技术的某些基本原理,获得了美国的ZL。  ·1967年,Egger和Petran成功地应用共聚焦显微镜产生了一个光学横断面。  ·1977年,Sheppard和Wilson首次描述了光与被照明物体的原子之间的非线性关系和激光扫描器的拉曼光

激光扫描共聚焦荧光显微镜荧光显微镜系统简介

  显微镜是LSCM的主要组件,它关系到系统的成像质量。显微镜光路以无限远光学系统可方便地在其中插人光学选件而不影响成像质量和测量精度。物镜应选取大数值孔径平场复消色差物镜,有利于荧光的采集和成像的清晰。物镜组的转换,滤色片组的选取,载物台的移动调节,焦平面的记忆锁定都应由计算机自动控制。  激光扫

激光扫描共聚焦显微镜克服图像模糊的缺点

  激光扫描共聚焦显微镜利用激光束经照明针孔形成点光源对标本内焦平面的每一点扫描,标本上的被照射点,在探测针孔处成像,由探测针孔后的光电倍增管(PMT)或冷电耦器件(cCCD)逐点或逐线接收,迅速在计算机监视器屏幕上形成荧光图像。照明针孔与探测针孔相对于物镜焦平面是共轭的,焦平面上的点同时聚焦于照明

激光扫描共聚焦荧光显微镜的成像原理和基本结构

    激光扫描共聚焦荧光显微镜是一种利用计算机、激光和图像处理技术获得生物样品三维数据、先进的分子细胞生物学的分析仪器。主要用于观察活细胞结构及特定分子、离子的生物学变化,定量分析,以及实时定量测定等。   成像原理   采用点光源照射标本,在焦平面上形成一个轮廓分明的小的光点,该点被照射后发出的

激光扫描荧光显微镜

探测装置比较典型。方法是将杂交后的芯片经处理后固定在计算机控制的二维传动平台上,并将一物镜置于其上方,由氩离子激光器产生激发光经滤波后通过物镜聚焦到芯片表面,激发荧光标记物产生荧光,光斑半径约为5-10μm。同时通过同一物镜收集荧光信号经另一滤波片滤波后,由冷却的光电倍增管探测,经模数转换板转换为数

激光共聚焦扫描显微境

   激光共聚焦扫描显微镜(laser confocal scanning microscope)用激光作扫描光源,逐点、逐行、逐面快速扫描成像,扫描的激光与荧光收集共用一个物镜,物镜的焦点即扫描激光的聚焦点,也是瞬时成像的物点。由于激光束的波长较短,光束很细,所以共焦激光扫描显微镜有较高的分辨力,

聚焦激光扫描显微镜

聚焦激光扫描显微镜(confocallaser scanning microscopy,CLSM)是生物医学实验室中重要的仪器设备,可以检测细胞甚至分子水平的改变,1995年美国学者在传统共聚焦激光扫描显微镜基础上加上在体扫描装置,实现了皮肤上的在体共聚焦成像,这是一种在皮肤原位、无创、细胞水平的成

激光共聚焦扫描显微境

   LCSM照片,蓝色为细胞核,绿色为微管    激光共聚焦扫描显微镜(laser confocal scanning microscope)用激光作扫描光源,逐点、逐行、逐面快速扫描成像,扫描的激光与荧光收集共用一个物镜,物镜的焦点即扫描激光的聚焦点,也是瞬时成像的物点。由于激光束的波长较短,

荧光显微镜和共聚焦激光扫描显微镜检测细胞凋亡

  一般以细胞核染色质的形态学改变为指标来评判细胞凋亡的进展情况。  常用的DNA特异性染料有:HO 33342 (Hoechst 33342),HO 33258 (Hoechst 33258),DAPI。三种染料与  DNA的结合是非嵌入式的,主要结合在DNA的A-T碱基区。紫外光激发时发射明亮的

激光扫描共聚焦显微镜的扫描模块

  扫描模块主要由针孔光栏(控制光学切片的厚度)、分光镜(按波长改变光线传播方向)、发射荧光分色器(选择一定波长范围的光进行检测)、检测器(光电倍增管)组成。荧光样品中的混合荧光进入扫描器,经过检测针孔光栏、分光镜和分色器选择后,被分成各单色荧光,分别在不同的荧光通道进行检测并形成相应的共焦图象,同

激光器应用——激光扫描共聚焦显微

iFLEX激光器应用——激光扫描共聚焦显微1,什么是激光扫描共聚焦显微共聚焦显微技术是近十几年迅速发展起来的一项高新研究技术,目前应用领域扩展到细胞学、微生物学、发育生物学、遗传学、神经生物学、生理和病理学等学科的研究工作中,成为现代生物学微观研究的重要工具。激光扫描共聚焦显微镜的主要是利用激光扫描

激光共聚焦扫描显微技术原理

激光共聚焦扫描显微技术(Confocal laser scanning microscopy)是一种高分辨率的显微成像技术。普通的荧光光学显微镜在对较厚的标本进行观察时,来自观察点邻近区域的荧光会对结构的分辨率形成较大的干扰。共聚焦显微技术的关键点在于,每次只对空间上的一个点(焦点)进行成像,再通过

激光扫描共聚焦显微镜

激光扫描共聚焦显微镜(Laser scanning ConfocalMicroscopy,简称LSCM),在荧光显微镜成象的基础上加装激光扫描装置,使用紫外光或可见光激发荧光,利用计算机进行图象处理,从而得到细胞或组织内部微细结构的荧光图象,捕捉到微弱的信号或追踪高效的进程以及在亚细胞水平上观察诸如

激光共聚焦扫描显微镜

对比激光共聚焦扫描显微镜与传统光学显微镜在高放大倍率下的成像效果。结果显示,激光共聚焦扫描显微镜在高放大倍率下,其成像景深大的优点对于获取高质量的图像有很大的帮助。同时通过激光共聚焦扫描显微镜的激光光源实现单色光成像,可以清晰观察到溅镀了消影层的ITO玻璃。

关于共聚焦激光扫描显微的简介

  共聚焦激光扫描显微(英语:Confocal laser scanning microscopy,CLSM,LCSM)是一项高分辨率三维光学成像技术。 [1]主要特点在于其光学分层能力,即获得特定深度下焦点内的图像。图像通过逐点采集,以及之后的计算机重构而成。因此它可以重建拓扑结构复杂的物体。对于

激光扫描共焦显微镜技术

l 样品要求:1.经荧光探剂标记(单标、双标、三标)2.固定的或活的组织3.固定的或活的贴壁培养细胞(Confocal专用小培养皿,盖玻片)4.悬浮细胞,甩片或滴片后,用盖玻片封一. 组成倒置或直立荧光显微镜、扫描头(照明针孔、探测针孔、荧光滤片系统、镜扫描系统和光电倍增管)、扫描头控制电路、计算机

激光扫描共聚焦显微镜的激光共聚焦显微镜结构

激光共聚焦扫描显微镜(Confocal laser scanning microscope,CLSM)用激光作扫描光源,逐点、逐行、逐面快速扫描成像,扫描的激光与荧光收集共用一个物镜,物镜的焦点即扫描激光的聚焦点,也是瞬时成像的物点。系统经一次调焦,扫描限制在样品的一个平面内。调焦深度不一样时,就可

共聚焦激光扫描显微镜的应用

膜电位 以往测定膜电位多用微电极直接插入法测量,不仅操作麻烦,而且对细胞也是一种损伤。共聚焦激光扫描显微镜则可利用荧光探针在细胞膜内外分布的差异测出膜电位,不但可以观察细胞膜电位的变化结果,更重要的是可以用于连续监测膜电位的迅速变化。膜电位荧光探针根据其对膜电位变化反应速度的快慢分为快、慢两类探针,

激光扫描共聚焦显微镜的应用

  应用功能  激光扫描共聚焦显微镜(Confocal laser scanning microscope,CLSM)是近代最先进的细胞生物医学分析仪器之一。它是在荧光显微镜成像的基础上加装激光扫描装置,使用紫外光或可见光激光荧光探针,利用计算机进行图像处理,不仅可观察固定的细胞、组织切片,还可对活

激光扫描共聚焦显微镜的问题

激光扫描共聚焦显微镜中各种样品串色的问题及其校正在图 5 中显示。图 5( a)中的纤维原细胞, Alexa Fluor488 绿色荧光串色进入 Mito Tracker 红色通道,当样品用 488 激光和 543 激光同时扫描时,会产生黄色的肌动蛋白丝。序列扫描和检测(图 5d)消除了串色影响。同

关于共聚焦激光扫描显微的历史介绍

  共聚焦的原理早在1957年就由美国科学家马文·明斯基注册为专利,但实际上经过三十年的时间及相应专用激光器的发展,直至1980年代末这项技术才成为标准技术。1978年,托马斯和克里斯托弗·克莱默设计出一套激光扫描程序。该程序采用激光聚焦的方式逐点扫描物体三维表面,并通过类似于扫描电镜的计算机化手段

激光扫描共聚焦显微镜展望

LSCM 有着独特的激光扫描成像方式及精确的计算机测量定位系统,是普通显微镜和电子显微镜的飞跃和补充,加上高分辨率、高灵敏度和灵活性空间结构观察的独特优势,其成为生命科学、医学以及材料科学相关的诸多重要分支领域的全新科研实验手段和必备研究工具之一,为许多研究者提供了有力的技术支持和新的探索思路。目前