一文简述光栅色散原理
光电光谱仪中使用反射光栅,通常是在玻璃上镀一层铝膜,然后用金刚石刀具在这铝膜上刻出很密的平行刻槽,当一束平行光投射到平面反射光栅表面时,光栅上的每一刻槽都进行衍射,而每一刻槽的衍射又要互相干涉,使不同的波长的光在不同的衍射方向上出现干涉极大,这样复合光通过光栅后就色散成单色光。由mλ=d(Sinθ+SinФ),可以看出,在光栅常数d及入射角θ固定时,在衍射方向上,每一不同的衍射角Ф有其相对应的mλ值,这就是光栅色散原理。......阅读全文
AvaSpecHERO型光谱仪光栅选择
应用范围可用波长范围(nm)每块光栅覆盖的光谱范围(nm)光栅线对数/mm闪耀波长(nm)光栅型号UV/VIS/NIR200-1160770-760*300420HSC0300-0.42UV/VIS200-1160373-345*600400HSC0600-0.40VIS/NIR200-116037
如何选择拉曼光谱仪的光学元件?
导语:在上期中,我们对拉曼光谱及其便携式光谱仪作了简单的介绍,这次就让我们来看看光谱仪光学模块的内部构造吧。便携式拉曼光谱仪的光学模块主要包括激发光源、拉曼探头以及分光系统。 激发光源的选择 拉曼散射的产生需要光进行激发。由于拉曼散射的光强较弱,所以拉曼光谱仪的理想激光光源必须具有良好单色性
红外光谱仪的种类介绍
红外光谱仪的种类有:①棱镜和光栅光谱仪。属于色散型,它的单色器为棱镜或光栅,属单通道测量。②傅里叶变换红外光谱仪。它是非色散型的,其核心部分是一台双光束干涉仪。当仪器中的动镜移动时,经过干涉仪的两束相干光间的光程差就改变,探测器所测得的光强也随之变化,从而得到干涉图。经过傅里叶变换的数学运算后,就可
AvaSpecULS2048(L)-标准型光纤光谱仪分辨率
* 取决于光栅的起始波长;波长越长,色散越大,分辨率越高。狭缝宽度(μm) 光栅线对数/mm 102550100200500300 0.80-0.90*1.10-1.20*2.304.609.0020.0600 0.40-0.50*0.631.152.314.5010.0830 0.280.400.
黄金光谱仪原理
在贵金属检测领域,传统的分析方法如试金石法、灰吹法、火试金法等都属于破坏性检测,具有消耗性和危险性,且样品的制备过程耗时更长。而X射线荧光光谱法的技术相对成熟,可以达到即时分析,无损检测,不需要任何耗材,并且检测精度可以达到小数点后四位数,是我国普及型贵金属检测技术的发展方向。MAY系列金银检测仪引
黄金光谱仪-原理
在贵金属检测领域,传统的分析方法如试金石法、灰吹法、火试金法等都属于破坏性检测,具有消耗性和危险性,且样品的制备过程耗时更长。而X射线荧光光谱法的技术相对成熟,可以达到即时分析,无损检测,不需要任何耗材,并且检测精度可以达到小数点后四位数,是我国普及型贵金属检测技术的发展方向。MAY系列金银检测
全自动生化分析仪的光源及分光系统
全自动生化分析仪可以说是在传统的分光光度计的基础上发展来的。从结构上来说,它包含分光光度计的主要组成部分,如:光源、单色器(色散装置)、比色池、检测器等。 1、光源:理想的光源应在整个波长范围内产生恒定的光强度,噪声低,长期稳定。遗憾的是实际上没有这样的光源,因此,需要依工作波段的不同选取不同
ICP的组成部分有哪些
我们常用的光谱仪有ICP光谱仪、原子发射光谱仪、电感耦合等离子体光谱仪等,其中ICP光谱仪是我们经常接触的。 ICP光谱仪是当前光谱分析中非常迅速非常灵敏的一种仪器。 ICP光谱仪三大主要部分: 一是激光光谱的光源; 二是光谱仪系统,使不同波长的光聚焦在仪器上的特定位置。 三是用置于焦
原子荧光光度计的结构(三)
单色器: 产生高纯单色光的装置,其作用为选出所需要测量的荧光谱线,排除其他光谱线的干扰。单色器有狭缝、色散元件(光栅或棱镜)和若干个反射镜或透镜所组成,色 散系统对分辨能力要求不高,但要求有较大的集光本领。使用单色器的仪器称为色散原子荧光光度计;非色散原子荧光分析仪没有单色器,一般仅配置
分光光度计仪器的组成
只有了解分光光度计基本结构,才能更好地使用分光光度计。分光光度计的仪器组成比较简单,主要部件包括由光源、单色器、吸收池、检测器以及数据处理及记录系统等组成,见图1。(1) 光源 分光光度计中光源为仪器提供连续辐射,理想的光源应在整个紫外可见光谱区可以发射连续光谱,具有足够的辐射强度、较好的稳定性、较
啁啾光纤光栅传感器的工作原理
上面介绍的光栅传感器系统,光栅的几何结构是均匀的,对单参数的定点测量很有效,但在需要同时测量应变和温度或者测量应变或温度沿光栅长度的分布时就显得力不从心。此时,采用啁啾光纤光栅传感器就就是一个不错的选择。 啁啾光纤光栅由于其优异的色散补偿能力而应用在高比特远程通信系统中。与光纤Bragg光栅传感器
杂散光光纤光谱仪的优点在于哪里?
杂散光光纤光谱仪是测量紫外、可见、近红外和红外波段光强度的一种技术。光谱测量被广泛应用于多种领域,如颜色测量、化学成份的浓度检测或电磁辐射分析等。杂散光光纤光谱仪一般都包括入射狭缝、准直镜、色散元件(光栅或棱镜)、聚焦光学系统和探测器。而在单色仪中通常还包括出射狭缝,让整个光谱中一个很窄的部分照射到
AvaSpecULS2048LTEC光谱仪分辨率表
* 取决于光栅的起始波长;波长越长,色散越大,分辨率越高。狭缝宽度 (µm)光栅线对数/mm102550 1002005003001.01.42.54.89.221.36000.40-0.53*0.71.22.44.610.88300.320.480.931.73.408.512000.20-0.2
光电比色法与吸光光度法的主要区别
主要区别在于获取单色光的方式不同,光电比色计是用滤光片来分光,而分光光度计用棱镜或光栅等分光,棱镜或光栅将入射光色散成谱带,从而获得纯度较高,波长范围较窄的各波段的单色光。
原子吸收光谱仪的分光系统相关介绍
1.作用:将待测元素的共振线与邻近谱线分开。 2.组件:色散元件(棱镜、光栅),凹凸镜、狭缝等。 3.单色器性能参数 (1)倒线色散率(D) 两条谱线间的距离与波长差的比值Δl/Δλ为线色散率。实际工作中常用其倒数Δλ/Δl (2)分辨率 仪器分开相邻两条谱线的能力。用该两条谱线的平均波
分子荧光基本结构与紫外可见有何不同
原子吸收分光光度法与紫外分光光度的区别 1.试比较原吸收分光光度法与紫外-可见分光光度法有哪些异同点? 答:相同点:二者都为吸收光谱,吸收有选择性,主要测量溶液,定量公式:A=kc,仪器结构具有相似性. 不同点:原子吸收光谱法 紫外――可见分光光度法 (1) 原子吸收 分子吸收 (2)
原子吸收光谱仪的选购
原子吸收光谱分析法在无机元素微量和痕量分析中占有极为重要的地位,也是光谱分析中中zui主要的分析仪器,其应用在地矿、冶金、环境检测、医疗、商检等行业及大专院校和科研院所里得到极为广泛的应用。目前各大生产原子吸收的厂家在技术上各有优势,国内火焰法分析精度也可以与国外仪器抗衡,但总体来说国外厂商在仪器自
如何选购原子吸收光谱仪?
原子吸收光谱分析法在无机元素微量和痕量分析中占有极为重要的地位,也是光谱分析中中最主要的分析仪器,其应用在地矿、冶金、环境检测、医疗、商检等行业及大专院校和科研院所里得到极为广泛的应用。目前各大生产原子吸收的厂家在技术上各有优势,国内火焰法分析精度也可以与国外仪器抗衡,但总体来说国外厂商在仪器自动化
AvaSpecULS3648TEC光谱仪分辨率表
* 取决于光栅的起始波长;波长越长,色散越大,分辨率越高。狭缝宽度 (µm)光栅线对数/mm102550 1002005003000.60-0.70*1.10-1.30*2.20-2.40*4.609.0020.06000.30-0.36*0.58-0.68*1.172.204.5010.08300
棱镜和光栅光谱仪的相关内容
属于色散型光谱仪,它的单色器为棱镜或光栅,属单通道测量,即每次只测量一个窄波段的光谱元。转动棱镜或光栅,逐点改变其方位后,可测得光源的光谱分布。 光栅光谱仪 随着信息技术和电子计算机的发展,出现了以多通道测量为特点的新型红外光谱仪,即在一次测量中,探测器就可同时测出光源中各个光谱元的信息,例
单色器是干什么的?
单色器由入射狭缝、准直镜、色散元件、物镜和出射狭缝构成。其中色散元件是关键部件,作用是将复合光分解成单色光。入射狭缝用于限制杂散光进入单色器,准直镜将入射光束变为平行光束后进入色散元件。物镜将出自色散元件的平行光聚焦于出口狭缝。出射狭缝用于限制通带宽度。将光源发射的复合光分解成单色光并可从中选出一任
单色器的概念
单色器由入射狭缝、准直镜、色散元件、物镜和出射狭缝构成。其中色散元件是关键部件,作用是将复合光分解成单色光。入射狭缝用于限制杂散光进入单色器,准直镜将入射光束变为平行光束后进入色散元件。物镜将出自色散元件的平行光聚焦于出口狭缝。出射狭缝用于限制通带宽度。将光源发射的复合光分解成单色光并可从中选出一任
致敬:ICP光谱发展道路上的创新者
ICP-OES(或称ICP-AES),全称是电感耦合等离子体发射光谱仪,迄今为止,在溶液态的元素分析领域,ICP-OES是被广大用户称赞最多的仪器。为什么这么说?因为它具有几大优点:(1)可以定量分析元素周期表中>73种元素,适用于广泛的标准;(2)通量很高,一分钟内可同时分析样品中的多元素(全
紫外可见分光光度计的构成简析
紫外可见分光光度计由光源、单色器、样品池、检测器、记录装置以及数据处理等部分组成。为得到全波长范围(200~800nm)的光,使用分立的双光源,其中氘灯的波长为185~395nm,钨灯的为350~800nm. 绝大多数仪器都通过一个动镜实现光源之间的平滑切换,可以平滑的在全光谱范围内扫描。光源
紫外可见分光光度计的构成简析
紫外可见分光光度计由光源、单色器、样品池、检测器、记录装置以及数据处理等部分组成。为得到全波长范围(200~800nm)的光,使用分立的双光源,其中氘灯的波长为185~395nm,钨灯的为350~800nm。绝大多数仪器都通过一个动镜实现光源之间的平滑切换,可以平滑的在全光谱范围内扫描。光源发出的光
AvaSpecULS2048光谱仪分辨率表
* 取决于光栅的起始波长;波长越长,色散越大,分辨率越高。狭缝宽度 (µm) 光栅线对数/mm 10 25 50 100 200 500 300 1.01.42.54.89.221.3600 0.40-0.53*0.71.22.44.610.8830 0.320.480.931.73.48.5120
AvaSpecULS2048光谱仪分辨率表
* 取决于光栅的起始波长;波长越长,色散越大,分辨率越高。狭缝宽度 (µm) 光栅线对数/mm 10 25 50 100 200 500 300 1.01.42.54.89.221.3600 0.40-0.53*0.71.22.44.610.8830 0.320.480.931.73.48.5120
有关食品检测实验室常用的分析仪器详解(四)
有机物结构分析与红外色谱仪仪器简介:化学教科书上说的它可以用来检验有机物的官能团,原理是因为不同的结构对红外光有不同程度的吸收,体现在谱图上就可以用来分析。仪器分类:① 棱镜和光栅光谱仪属于色散型光谱仪,它的单色器为棱镜或光栅,属单通道测量,即,每次只测量一个窄波段的光谱元。转动棱镜或光栅,逐点改变
如何消除色度色散对DWDM系统的影响
对于DWDM系统,由于系统主要应用于1550nm窗口,如果使用G.652光纤,需要利用具有负频率色散的色散补偿光纤(DCF),对色散进行补偿,降低整个传输线路的总色散。
如何消除色度色散对DWDM系统的影响
对于DWDM系统,由于系统主要应用于1550nm窗口,如果使用G.652光纤,需要利用具有负频率色散的色散补偿光纤(DCF),对色散进行补偿,降低整个传输线路的总色散。