染色质免疫沉淀法(Chromatinimmunoprecitation,ChIP)

染色质免疫沉淀法(Chromatin immunoprecitation,ChIP)是研究体内DNA与蛋白质相互作用的重要工具。它可以灵敏地检测目标蛋白与特异DNA片段的结合情况,还可以用来研究组蛋白与基因表达的关系。核小体组蛋白可以发生多种翻译后的共价修饰,如乙酰化、甲基化、磷酸化、泛素化等,这些共价修饰与真核基因的表达密切相关。根据“组蛋白密码”假说,组蛋白的各种共价修饰的组合会以协同或拮抗的方式诱导特异的下游生物学功能,因此,ChIP也为研究组蛋白修饰在基因表达中的作用,全面阐明真核基因的表达调控机制提供了强有力的研究工具。 真核生物细胞状态是由内源和外源因素共同影响的,所有信号传递途径的终点都是DNA。DNA通过核蛋白复合物组成染色质,染色质是基因调控的一个重要作用位点。转录激活因子和辅助抑制因子的研究显示存在一种新的调节机制--“组蛋白密码”,其信息存在于组蛋白的转录后修饰等过程中。该类修饰包括组蛋白磷酸化、......阅读全文

异染色质化的定义

中文名称异染色质化英文名称heterochromatinization定  义常染色质转变为异染色质的过程。应用学科遗传学(一级学科),细胞遗传学(二级学科)

常染色质的结构介绍

常染色质的结构类似于未折叠的一串珠子中间被一根细绳穿过,这其中的珠子代表核小体结构。每个核小体由八个蛋白质单体组成,这些蛋白质叫做组蛋白,每个组蛋白单体周围有147个碱基对长度的双链DNA环绕;在常染色质中,DNA在组蛋白上的包裹是较为松散的,从而其上的原始DNA序列是暴露在外可被读取的。每一个处于

关于异染色质的定义

  异染色质分为结构异染色质和功能异染色质两种类型。结构异染色质是指各类细胞在整个细胞周期内处于凝集状态的染色质,多定位于着丝粒区、端粒区,含有大量高度重复顺序的脱氧核糖核酸(DNA),称为卫星DNA(satellite DNA)。功能异染色质只在一定细胞类型或在生物一定发育阶段凝集,如雌性哺乳动物

聚胺法分离染色质

聚胺法分离染色质试剂、试剂盒:秋水仙胺、聚胺缓冲液实验步骤:有丝分裂中细胞的同步化37℃,用合适的含有 FCS,抗生素和其他必要成分的培养基培养细胞。2. 收集有丝分裂细胞前 10~16 小时在培养基中以 0.06 μg/ml 的浓度加入秋水仙胺。收获细胞并在聚胺缓冲液中裂解3. 收获细胞。对于悬浮

JBC:染色质重塑与癌症

  染色质的结构变化又称为染色质重塑(Chromatin remodeling),染色质重塑调节着基因转录、DNA修复、程序性细胞死亡等多种细胞基础过程。Stowers医学研究所的科学家们在前期研究的基础上深入解析了染色质重构的调控机制。   Stowers 研究所的研究人员进行了一系列生化实

凝聚染色质的概念

中文名称凝聚染色质英文名称condensed chromatin定  义处于凝缩状态的染色质。应用学科遗传学(一级学科),细胞遗传学(二级学科)

常染色质的外形介绍

  染色质可以分为两种类群,异染色质和常染色质。最开始,这两种形式是通过其在染色之后的颜色深浅区分的,常染色质一般着色较浅,而异染色质着色很深,表明其紧密聚集。异染色质通常集中在细胞核的边缘区域。然而,不同于这种早期的二分法,最近的研究表明在动物和植物体内都拥有不止这两种染色体结构,可能会有四到五种

常染色质的结构特点

常染色质的结构类似于未折叠的一串珠子中间被一根细绳穿过,这其中的珠子代表核小体结构。每个核小体由八个蛋白质单体组成,这些蛋白质叫做组蛋白,每个组蛋白单体周围有147个碱基对长度的双链DNA环绕;在常染色质中,DNA在组蛋白上的包裹是较为松散的,从而其上的原始DNA序列是暴露在外可被读取的。每一个处于

关于染色质的功能简介

  如果说细胞核是细胞遗传与代谢的调控中心,那么这个中心的最重要成员便是染色质。几乎所有细胞生命活动都要从染色质开始。我们知道细胞的成长、分裂甚至衰老与死亡都是受基因控制的,而细胞内基因存在与发挥功能的结构基础是染色质。与基因组直接相关的细胞活动都是在染色质水平进行的,如DNA复制、基因转录、同源重

异染色质化的概念

中文名称异染色质化英文名称heterochromatinization定  义常染色质转变为异染色质的过程。应用学科遗传学(一级学科),细胞遗传学(二级学科)

常染色质的外形介绍

一般来说,常染色质通过G显带技术表现为浅色带状,这样的结构在光学显微镜下可见,其颜色与异染色质较深的染色不同。其染色较浅是由于其聚集程度较低导致的。常染色体的基本结构是一条细长且开放未折叠的10纳米长微纤维。在原核细胞中,常染色质是其染色质的唯一存在形式;这表明异染色质是一种与细胞核一同在原核细胞之

常染色质的结构简介

  常染色质的结构类似于未折叠的一串珠子中间被一根细绳穿过,这其中的珠子代表核小体结构。每个核小体由八个蛋白质单体组成,这些蛋白质叫做组蛋白,每个组蛋白单体周围有147个碱基对长度的双链DNA环绕;在常染色质中,DNA在组蛋白上的包裹是较为松散的,从而其上的原始DNA序列是暴露在外可被读取的。每一个

间期染色质的主要类型

间期染色质按其形态特征、活性状态和染色性能区分为两种类型:常染色质和异染色质。按功能状态的不同可将染色质分为活性染色质和非活性染色质。

染色质免疫共沉淀(ChIP)

            实验方法原理 在保持组蛋白和DNA联合的同时,通过运用对应于一个特定组蛋白标记的生物抗体,染色质被切成很小的片断,并沉淀下来。IP是利用抗原蛋白质和抗体的特异性结合以及细菌蛋白质的“prorein A”特异性地结合到免疫球蛋白的FC片段的现象

染色质免疫共沉淀(ChIP)

实验方法原理 在保持组蛋白和DNA联合的同时,通过运用对应于一个特定组蛋白标记的生物抗体,染色质被切成很小的片断,并沉淀下来。IP是利用抗原蛋白质和抗体的特异性结合以及细菌蛋白质的“prorein A”特异性地结合到免疫球蛋白的FC片段的现象活用开发出来的方法。目前多用精制的prorein A预先结

x染色质的相关叙述

  X染色质,是上皮细胞等的间期核,用碱性染料染色后,在人的女性细胞靠近核膜处可观察到有一个长圆形的小体(长径稍大于1微米),过去叫做染色质,或称为巴尔氏小体。但后来发现了Y染色质,为避免混同,现一律改称为X染色质。 染色质与染色体是在细胞周期的不同时间所呈现形态结构不同的同一物质。  1、正常值 

染色质免疫共沉淀研究

真核生物的基因组DNA以染色质的形式存在,研究蛋白质与DNA在染色质环境下的相互作用是阐明真核生物基因表达机制的基本途径。与传统的EMSA技术相比,染色质免疫沉淀技术(ChIP)能真实完整地反映结合在DNA序列上的调控蛋白,是目前研究体内DNA与蛋白质相互作用的最佳方法。染色质免疫沉淀技术(chro

染色质的发现过程介绍

  1879年,W. Flemming提出了染色质(chromatin)这一术语,用以描述细胞核中能被碱性染料强烈着色的物质。  1888年,Waldeyer正式提出染色体的命名。  经过一个多世纪的研究,人们认识到,染色质和染色体是在细胞周期不同阶段可以相互转变的形态结构。

关于常染色质的介绍

  常染色质是指间期细胞核内染色质纤维折叠压缩程度低,相对处于伸展状态,用碱性染料染色时着色浅的那些染色质。在常染色质中,DNA组装比为1/2 000~1/1 000,即DNA实际长度为染色质纤维长度的1 000~2 000倍。构成常染色质的DNA主要是单一序列DNA和中度重复序列DNA。常染色质并

异染色质的构成种类

常染色质易被碱性染料染成浅色,或对福尔根反应呈弱阳性。异染色质易被碱性染料染成深色,或对福尔根反应呈阳性。异染色质着色较深,常位于细胞核的边缘和核仁周围,构成核仁相随染色质的一部分。可以分为结构性异染色质(constitutive heterochromatin)和兼性异染色质(facultativ

常染色质的功能简介

  常染色质区域的基因可以被转录为信使RNA。常染色质区域非折叠的结构允许基因调控蛋白和RNA聚合酶与其上的DNA序列结合,从而开启转录过程。在转录过程中,并非所有的常染色质都会被转录,但基本上非转录的部分会折叠为异染色质以保护暂时其上不用的基因。因此细胞的活性与细胞核中的常染色质数目有直接关系。 

间期染色质的基本介绍

  在细胞不分裂的间期,存在两种类型的染色质:常染色质,由具有活性的 DNA 组成; 异染色质,主要由无活性的 DNA 组成,似乎在染色体阶段起到结构性作用。异染色质可进一步区分为两种类型: 组成型异染色质,位于着丝粒周围,通常包含重复序列,从未表达;兼性异染色质,有时表达。

简述染色质的组装模型

  人的每个体细胞所含DNA约6×109bp分布在46条染色体中,总长达2米,平均每条染色体DNA分子长约5厘米,而细胞核直径只有5~8微米,这就意味着从染色质DNA组装成染色体要压缩近万倍,相当于一个网球内包含有2千米长的细线。

染色质免疫共沉淀(ChIP)

染色质免疫共沉淀实验方法原理在保持组蛋白和DNA联合的同时,通过运用对应于一个特定组蛋白标记的生物抗体,染色质被切成很小的片断,并沉淀下来。IP是利用抗原蛋白质和抗体的特异性结合以及细菌蛋白质的“prorein A”特异性地结合到免疫球蛋白的FC片段的现象活用开发出来的方法。目前多用精制的prore

染色质的研究发展历史

1879年,W. Flemming提出了染色质(chromatin)这一术语,用以描述细胞核中能被碱性染料强烈着色的物质。1888年,Waldeyer正式提出染色体的命名。经过一个多世纪的研究,人们认识到,染色质和染色体是在细胞周期不同阶段可以相互转变的形态结构。

关于细胞染色质的详述

  人体内各种细胞,虽然大小不一,形态各异,功能也不相同,但它们都是生命活动的基本场所,其基本结构是一样的,细胞是由细胞核、细胞质和细胞膜组成,在细胞核中,有一种易被碱性染料染上颜色的物质,叫做染色质。其在细胞的有丝分裂期螺旋化形成染色体。它是由脱氧核糖核酸(DNA)和组蛋白组成。是 调节生物体新陈

染色质免疫共沉淀(ChIP)

实验方法原理在保持组蛋白和DNA联合的同时,通过运用对应于一个特定组蛋白标记的生物抗体,染色质被切成很小的片断,并沉淀下来。IP是利用抗原蛋白质和抗体的特异性结合以及细菌蛋白质的“prorein A”特异性地结合到免疫球蛋白的FC片段的现象活用开发出来的方法。目前多用精制的prorein A预先结合

关于x染色质的简介

  x染色质曾称巴氏小体或x小体,为紧贴细胞核膜内面的团块状结构,直径约1um,染色程度较其他染色质深。其形态不一,常呈三角、半圆、平凸或球形。利用放射自显影技术的研究发现,女性的两条x染色体中有一条DNA复制延迟,称迟复制x。迟复制的x染色体在间期时表现为x染色质。当细胞内有一条以上x染色体时,在

异染色质的分类介绍

异染色质着色较深,常位于细胞核的边缘和核仁周围,构成核仁相随染色质的一部分。可以分为结构性异染色质(constitutive heterochromatin)和兼性异染色质(facultative heterochromatin)两种。1.结构性异染色质 是各类细胞的整个发育过程中都处于凝集状态的染

染色质的组装过程

①最开始是H3·H4四聚体的结合,由CAF-1介导与新合成的裸露的DNA结合。②然后是两个H2A·H2B二聚体由NAP-1和NAP-2介导加入。为了形成一个核心颗粒,新合成的组蛋白被特异地修饰。组蛋白H4的Lys5和Lys12两个位点典型地被乙酰化。③核小体最后的成熟需要ATP来创建一个规则的间距以