环氧树脂钠离子测定方法

1 主题内容与适用范围 本标准规定了用钠离子浓度计测定环氧树脂水萃取液中钠离子含量的方法。 本标准适用于双酚A型环氧树脂中钠离子含量的测定。 2 术语 2.1 钠离子活度指数(pNa): 以水溶液中钠离子活度的负对数或钠离子活度倒数的对数表示 即: 式中:a——钠离子活度系数; c——钠离子浓度,mol/L。 当水中钠离子浓度无限稀时,其活度系数近似于l,可把活度和浓度等同看待,即得: 2.2 pNa4定位溶液:当水中钠离子浓度为0.000lmol/L时,pNa=4称为PNa4溶液,用作电位计定位标准溶液,称为pNa4定位溶液。 3 方法提要 试样溶解在适量的二甲苯—环己酮混合溶剂中,用水萃取分离,然后用钠离子浓度计测......阅读全文

钠离子电池的工作原理

钠离子电池与锂离子电池工作原理类似,钠离子电池也遵循脱嵌式的工作原理(在充电过程中,钠离子从正极脱出并嵌入负极,嵌入负极的钠离子越多,充电容量越高;放电 时过程相反,回到正极的钠离子越多,放电容量越高)。钠离子电池和锂离子电池的主要区别在于正负极材料、电解液不同,尤其是正极材料的区别。

钠离子电池的工作原理

钠离子电池在充放电过程中,Na+在两个电极之间往返嵌入和脱出:充电时,Na+从正极脱嵌,经过电解质嵌入负极;放电时则相反。新款18650钠离子电池,借助了钠离子转移(而不是锂离子)来存储和释放电能。

水中钠离子的检测方法

  水中钠离子的检测方法有很多,例如原子吸收分光光度法、静态法等。其中原子吸收法适用于含钠5-500mg/L的水样测定。主要原理是将含有钠离子的水样喷入空气-乙炔火焰中,钠离子会被热解为基态原子,以钠空心阴极灯为光源,钠的330.2nm或589.0nm为分析线,测定含钠水样的吸光度。

钠离子计的特点

  独有的EH氧化还原电位(ORP)测量模式,直接显示相对于标准氢电极的氧化还原电位。  特点  pH缓冲溶液5点(1.68,4.01,7.00,10.01,12.46和1.68,4.00,6.86,9.18,12.46)自动标定  5点离子浓度标准液线性校正功能,直接测出样品离子浓度  离子浓度非

钠离子电池的结构特点

钠离子电池使用的电极材料主要是钠盐,相较于锂盐而言储量更丰富,价格更低廉。由于钠离子比锂离子更大,所以当对重量和能量密度要求不高时,钠离子电池是一种划算的替代品。

钠离子电池的技术优点

钠离子电池的核心原材料储量更高、开采难度更低。数据表明,地壳当中钠的含量有2.75%,而且可以用海水制备金属钠,是储量丰富、可得性好的新能源电池材料。钠电池的BOM成本也比锂电池低20%,并且,比磷酸铁锂的成本更低。而且,高低温性能优异,在面对挤压、穿刺等情景时安全性也高,还具备快充能力。但是,钠离

钠离子电池的技术特点

 一、钠离子电池优势: 1、资源丰富:不用多说 2、成本低:资源多,成本自然就低,综合成本比锂电池低30%。  3、安全性高:钠离子电池瞬间发热更少、稳定性更好,钠离子电池经历短路、针刺、挤压等测试后,无起火、无爆炸。 4、无过放电情况:正极可以放电至0V而不影响后续使用,进而使得电池在储存运输过程

水中钠离子检测步骤简介

  1.绘制标准曲线  在100mL容量瓶中,各加氯化铯溶液10mL,按照相应的配制标准,准确吸取钠离子标准溶液与容量瓶中,然后用三级试剂水稀释至刻度摇匀。  将光度计波长调节至589.0nm处,然后由稀到浓逐个测定吸光度,同时做空白实验。以吸光度为纵坐标,相对应的钠含量为横坐标,绘制出标准曲线。 

钠离子电池的工作原理

钠离子电池在充放电过程中,Na+在两个电极之间往返嵌入和脱出:充电时,Na+从正极脱嵌,经过电解质嵌入负极;放电时则相反。新款18650钠离子电池,借助了钠离子转移(而不是锂离子)来存储和释放电能。

钠离子电池的技术特点

钠离子电池的核心原材料储量更高、开采难度更低。数据表明,地壳当中钠的含量有2.75%,而且可以用海水制备金属钠,是储量丰富、可得性好的新能源电池材料。钠电池的BOM成本也比锂电池低20%,并且,比磷酸铁锂的成本更低。而且,高低温性能优异,在面对挤压、穿刺等情景时安全性也高,还具备快充能力。但是,钠离

钠离子电池产生的背景

 (1)锂钠同族,物化性质类似(2)锂资源稀缺,钠资源丰富锂资源的全球储量有限,锂元素在地壳中的含量仅为 0.0065%。随着新能源汽车的发 展对电池的需求大幅上升,资源端的瓶颈逐渐显现,成本较高限制了锂离子电池的大规模应用。钠资源储量非常丰富,地壳丰度为 2.64%,是锂资源的 440 倍,且钠资

环氧树脂韧性不足,国产碳纤维缺股劲儿

碳纤维产业链核心环节很多,包括上游原丝生产、中游碳化环节、下游复合材料及其应用,经过十多年的研发和突破,目前我国碳纤维的‘卡脖子’问题主要在下游应用环节,即复合材料和制品方面。”中国化学纤维工业协会副会长贺燕丽说。 碳纤维是一种含碳量在95%以上的高强度新型纤维材料,之所以其质量能比金属铝

钠离子电池:“备胎”转正何日可期?

   “许多人对钠离子电池寄予厚望,您怎么看待它的前景?”在2021年腾讯WE大会期间,《中国科学报》记者将这一问题抛给了动力电池与储能及燃料电池技术科学家王朝阳。  “钠离子电池是磷酸铁锂电池的‘备胎’。”他简单、直接的回答让记者颇感意外。毕竟,钠离子电池已经在国内引发极大关注。  “说它是‘备胎

钠离子浓度计的特点

pH缓冲溶液5点(1.68,4.01,7.00,10.01,12.46和1.68,4.00,6.86,9.18,12.46)自动标定5点离子浓度标准液线性校正功能,直接测出样品离子浓度离子浓度非线性自动空白校正功能,适合低浓度样品测量离子场效应电极(ISFET)模式,选配ISFET电极,拓展应用领域

钠离子浓度计的特点

  pH缓冲溶液5点(1.68,4.01,7.00,10.01,12.46和1.68,4.00,6.86,9.18,12.46)自动标定  5点离子浓度标准液线性校正功能,直接测出样品离子浓度  离子浓度非线性自动空白校正功能,适合低浓度样品测量  独有的EH氧化还原电位(ORP)测量模式,直接显示

新型钠离子电池开展应用示范

近日,中科院大连化学物理研究所研究员李先锋、副研究员郑琼团队自主研制出48V/10Ah磷酸盐基钠离子电池储能系统,并作为中低速电动车的动力电源开展应用示范。根据实测数据,在6~7摄氏度环境温度下,该动力电池系统续航里程达到35千米,系统比能量为90瓦时每千克。该系统由32个5安培小时钠离子软包电池,

钠离子电池的工作原理介绍

钠离子电池在充放电过程中,Na+在两个电极之间往返嵌入和脱出:充电时,Na+从正极脱嵌,经过电解质嵌入负极;放电时则相反。新款18650钠离子电池,借助了钠离子转移(而不是锂离子)来存储和释放电能。

钠离子电池:清洁环保新能源

  充分利用太阳能 未来或走进千家万户   “使用可再生能源的其他电池,例如熔盐或液体硫磺,原料只能在高温下摄取,这是它们昂贵和不切实际的原因所在。另外,像铅酸电池这种类型的能源具有很强的腐蚀性,会造成极大的环境污染。而钠离子电池则不会出现上述这些情况。”澳大利亚莫道克大学的化学矿物学家Minak

钠离子浓度计检测标准

   DWS-51型钠离子浓度计   一、仪器的用途   DWS-51型钠离子浓度计是以测量水溶液中的含Na+量而设计的,特别对电厂高纯水(如蒸汽、凝结水、锅炉给水等)的品质监督更适宜应用,其它对炉子水、天然水等也可以应用。   DWS-51型钠离子浓度计是一台全集电路式高阻抗毫伏计(以下称

钠离子浓度计有哪些特点?

  特点  pH缓冲溶液5点(1.68,4.01,7.00,10.01,12.46和1.68,4.00,6.86,9.18,12.46)自动标定  5点离子浓度标准液线性校正功能,直接测出样品离子浓度  离子浓度非线性自动空白校正功能,适合低浓度样品测量  独有的EH氧化还原电位(ORP)测量模式,

钠离子电池的技术优势

钠离子电池使用的电极材料主要是钠盐,相较于锂盐而言储量更丰富,价格更低廉。由于钠离子比锂离子更大,所以当对重量和能量密度要求不高时,钠离子电池是一种划算的替代品。 与锂离子电池相比,钠离子电池具有的优势有:1、钠盐原材料储量丰富,价格低廉,采用铁锰镍基正极材料相比较锂离子电池三元正极材料,原料成本降

钠离子电池的定义及应用

钠离子电池也是一种二次电池(充电电池),主要依靠钠离子在正极和负极之间移动来工作,与锂离子电池工作原理相似。在充放电过程中,Na+在两个电极之间往返嵌入和脱出:充电时,Na+从正极脱嵌,经过电解质嵌入负极;放电时则相反。钠离子电池使用的电极材料主要是钠盐,相较于锂盐而言储量更丰富,价格更低廉。由于钠

钠离子电池的工作原理介绍

钠离子电池的工作原理钠离子电池在充放电过程中,Na+在两个电极之间往返嵌入和脱出:充电时,Na+从正极脱嵌,经过电解质嵌入负极;放电时则相反。新款18650钠离子电池,借助了钠离子转移(而不是锂离子)来存储和释放电能。

钠离子电池的技术优势

1、钠盐原材料储量丰富,价格低廉,采用铁锰镍基正极材料相比较锂离子电池三元正极材料,原料成本降低一半;2、由于钠盐特性,允许使用低浓度电解液(同样浓度电解液,钠盐电导率高于锂电解液20%左右)降低成本;3、钠离子不与铝形成合金,负极可采用铝箔作为集流体,可以进一步降低成本8%左右,降低重量10%左右

钠离子电池的主要材料介绍

钠离子电池使用的电极材料主要是钠盐,相较于锂盐而言储量更丰富,价格更低廉。由于钠离子比锂离子更大,所以当对重量和能量密度要求不高时,钠离子电池是一种划算的替代品。

钠离子电池技术的研究方向

(1)材料研究有待深入:硬碳机理,性能提升,安全评估 目前学术界对于硬碳的储钠机理尚存诸多争议,并未完全阐明。为改善现有硬碳负极首周效率较低等缺陷,必须深入理解其储钠的动力学机制,为技术研发提供最根本的理论指导。现有钠离子电池的材料性能尚有较大的改良空间。总体而言,现阶段的钠离子电池的能量密度与理论

钠离子电池或成市场“新宠”

  在电池这个庞大的家族中,相比人们熟知的锂离子电池、铅酸电池,镍镉电池、钠离子电池等因储能容量受限、循环次数较少因素未能成为市场的“宠儿”。  不过,近日中国科学院物理所研究员胡勇胜带领团队给钠离子电池的市场带来了一针“强心剂”。他的团队成功利用无烟煤制作出钠离子电池负极,为其进一步市场化应用提供

钠离子电池的技术优势

研究人员将这种特定的材料定位商业机密,LITEN合作研究员Lo?c Simonin指出:“其能量密度可与磷酸铁锂等锂离子电池相匹敌”。钠离子电池使用的电极材料主要是钠盐,相较于锂盐而言储量更丰富,价格更低廉。由于钠离子比锂离子更大,所以当对重量和能量密度要求不高时,钠离子电池是一种划算的替代品。 与

钠离子电池的技术优势

研究人员将这种特定的材料定位商业机密,LITEN合作研究员Lo?c Simonin指出:“其能量密度可与磷酸铁锂等锂离子电池相匹敌”。钠离子电池使用的电极材料主要是钠盐,相较于锂盐而言储量更丰富,价格更低廉。由于钠离子比锂离子更大,所以当对重量和能量密度要求不高时,钠离子电池是一种划算的替代品。 与

钠离子浓度计检测标准

   DWS-51型钠离子浓度计   一、仪器的用途   DWS-51型钠离子浓度计是以测量水溶液中的含Na+量而设计的,特别对电厂高纯水(如蒸汽、凝结水、锅炉给水等)的品质监督更适宜应用,其它对炉子水、天然水等也可以应用。   DWS-51型钠离子浓度计是一台全集电路式高阻抗毫伏计(以下称电