X荧光光谱仪的保养

X荧光光谱仪工作的外部环境 1、周围强磁场干扰 设备合理的工作环境,要求在没有电机、振动、电磁、高压或有高频率电焊器等电磁干扰的地方安装,否则会干扰设备的谱形或造成设备不能正常工作。 2、环境温度,湿度的影响 应保持室温20~25℃为宜,气温过高或过低都会影响设备的正常运作,所以好配有空调;空气中相对湿度应保持......阅读全文

X荧光光谱仪的保养

  X荧光光谱仪工作的外部环境   1、周围强磁场干扰   设备合理的工作环境,要求在没有电机、振动、电磁、高压或有高频率电焊器等电磁干扰的地方安装,否则会干扰设备的谱形或造成设备不能正常工作。   2、环境温度,湿度的影响   应保持室温20~25℃为宜,气温过高或过低都会

X荧光光谱仪的保养

  X荧光光谱仪工作的外部环境   1、周围强磁场干扰   设备合理的工作环境,要求在没有电机、振动、电磁、高压或有高频率电焊器等电磁干扰的地方安装,否则会干扰设备的谱形或造成设备不能正常工作。   2、环境温度,湿度的影响   应保持室温20~25℃为宜,气温过高或过低都会

X荧光光谱仪的保养

X荧光光谱仪工作的外部环境   1、周围强磁场干扰   设备合理的工作环境,要求在没有电机、振动、电磁、高压或有高频率电焊器等电磁干扰的地方安装,否则会干扰设备的谱形或造成设备不能正常工作。   2、环境温度,湿度的影响   应保持室温20~25℃为宜,气温过高或过低都会影响设备的正常运作,所以配有

X射线荧光光谱仪的维护保养

 X射线荧光分析技术(XRF)作为一种快速分析手段,为相关部门提供了一种可行的、低成本的并且及时的检测、筛选和控制有害元素含量的有效途径。相对于其他分析方法,XRF 具有无需对样品进行特别的化学处理,快速、方便、测量成本低等明显优势,特别适合用于各类相关部门作为过程控制和检测使用。  X射线荧光光谱

X射线荧光光谱仪的维护与保养

X射线荧光光谱仪属于大型分析测试仪器,对周围环境要求比较高。实验室内要保证恒温、恒湿,避免酸性气体存在;要保持清洁,避免震动;要保证电源稳定,并配有独立的地线。定期对X射线荧光光谱仪各组成部分,如高压X射线光管、检测晶体、探测器、真空系统等进行检查、维护和保养,保证仪器处于最佳的运行状态。

X射线荧光光谱仪的维护与保养

X射线荧光光谱仪属于大型分析测试仪器,对周围环境要求比较高。实验室内要保证恒温、恒湿,避免酸性气体存在;要保持清洁,避免震动;要保证电源稳定,并配有独立的地线。定期对X射线荧光光谱仪各组成部分,如高压X射线光管、检测晶体、探测器、真空系统等进行检查、维护和保养,保证仪器处于最佳的运行状态。

X射线荧光光谱仪的维护与保养

X射线荧光光谱仪属于大型分析测试仪器,对周围环境要求比较高。实验室内要保证恒温、恒湿,避免酸性气体存在;要保持清洁,避免震动;要保证电源稳定,并配有独立的地线。定期对X射线荧光光谱仪各组成部分,如高压X射线光管、检测晶体、探测器、真空系统等进行检查、维护和保养,保证仪器处于最佳的运行状态。

保养好X荧光光谱仪才是硬道理

荧光光谱仪是根据X射线荧光光谱分析方法配置的多通道X射线荧光光谱仪,能够分析固体或粉状样品中各种元素的成分含量,具有灵敏度高、精密度好、性能稳定、分析速度快等特点,是一种中型、经济 、高性能的波长色散X射线光谱仪。   X荧光光谱仪的维护和保养:   1 注意事项和严禁事项   1.1 注意事项  

X荧光光谱仪(RoHS检测仪器)的保养

一、仪器工作的外部环境1、周围强磁场干扰设备合理的工作环境,要求在没有电机、振动、电磁、高压或有高频率电焊器等电磁干扰的地方安装,否则会干扰设备的谱形或造成设备不能正常工作。2、环境温度,湿度的影响应保持室温20~25℃为宜,气温过高或过低都会影响设备的正常运作,所以需要配有空调;空气中相对湿度应保

关于X射线荧光光谱仪的维护保养介绍

  1、进样系统的维护保养  待仪器关闭后打开仪器外盖,卸下进样系统上的样品杯,卸开样品杯用酒精纱布清理样品杯的所有部件,用酒精纱布清理射线管底座的O环,待清理完后安装好样品杯和仪器外盖开机,维护完毕。  2、循环水的维护保养  换外循环水:首先按正常程序关闭仪器包括仪器背面的主电源,关闭循环水机,

X荧光光谱仪的原理

    X射线是一种电磁波,波长比紫外线还要短,为0.001- 10nm左右。X射线照射到物质上面以后,从物质上主要可以观测到以下三种X射线。荧光X射线、散射X射线、透过X射线,Atomray CX-5500产品使用的是通过对第一种荧光X射线的测定,从物质中获取元素信息(成分和膜厚)的荧光X射线法原

X荧光光谱仪的优点

X荧光光谱仪是一种射线式分析仪器,是X射线分析仪器的一种常用形式。X射线荧光光谱仪能分析原子序数 12~92的所有元素,选择性高,分析微量组分时受基体的影响小,在地质、采矿和冶金等部门应用很广。X荧光光谱仪的原理:元素的原子受到高能辐射激发而引起内层电子的跃迁,同时发射出具有一定特殊性波长的X射线,

X荧光光谱仪的优点

 1、 分析速度高。测定用时与测定精密度有关,但一般都很短,2~5分钟就可以测完样品中的全部待测元素。   2、X射线荧光光谱跟样品的化学结合状态无关,而且跟固体、粉末、液体及晶质、非晶质等物质的状态也基本上没有关系。(气体密封在容器内也可分析)但是在高分辨率的精密测定中却可看到有波长变化等现象。特

X荧光光谱仪的使用

 用X射线照射试样时,试样可以被激发出各种波长的荧光X射线,需要把混合的X射线按波长(或能量)分开,分别测量不同波长(或能量)的X射线的强度,以进行定性和定量分析,为此使用的仪器叫X射线荧光光谱仪。X荧光光谱仪(XRF)由激发源(X射线管)和探测系统构成。X荧光光谱仪能将探测系统所收集到的信息转换成

X荧光光谱仪的应用

 初从事近红外光谱分析的人员常常会提出这样的问题:什么样的近红外光谱仪器zui好? 如何选择一台合适的近红外光谱仪器?实际上,“zui好”仪器的定义是很难确定的, “zui好”的仪器也是不存在的。因为对某一特定的仪器所提出的各项要求是随着所需要解决的具体问题的不同而有所差异的。为了帮助使用者根据特定

X荧光光谱仪的优点

X荧光光谱仪优点:   a) 分析速度高。测定用时与测定精密度有关,但一般都很短,2~5分钟就可以测完样品中的全部待测元素。   b) X射线荧光光谱跟样品的化学结合状态无关,而且跟固体、粉末、液体及晶质、非晶质等物质的状态也基本上没有关系。(气体密封在容器内也可分析)但是在高分辨率的精密测定中却可

X荧光光谱仪特点

 X荧光光谱仪特点:   1、无损检测,可对电子电气设备,玩具指令中的有害物质进行定性定量分析。   2、测量时间短,客户可选择测试时间:60-300秒。   3、全封闭式金属机箱及防泄漏保护开关设计,更好地保障操作员的人身安全。流水线型外观,美观大方。   4、配备X Y轴可移动平台,方便样品点选

X荧光光谱仪原理

X荧光光谱仪原理当能量高于原子内层电子结合能的高能X射线与原子发生碰撞时,驱逐一个内层电子而出现一个空穴,使整个原子体系处于不稳定的激发态,激发态原子寿命约为10-12~10-14s,然后自发地由能量高的状态跃迁到能量低的状态。这个过程称为驰豫过程。驰豫过程既可以是非辐射跃迁,也可以是辐射跃迁.当较

x荧光光谱仪原理

荧光,顾名思义就是在光的照射下发出的光。X射线荧光就是被分析样品在X射线照射下发出的X射线,它包含了被分析样品化学组成的信息,通过对上述X射线荧光的分析确定被测样品中各组份含量的仪器就是X射线荧光分析仪。从原子物理学的知识我们知道,对每一种化学元素的原子来说,都有其特定的能级结构,其核外电子都以各自

X-射线荧光光谱仪

用X射线照射试样时,试样可以被激发出各种波长的荧光X射线,需要把混合的X射线按波长(或能量)分开,分别测量不同波长(或能量)的X射线的强度,以进行定性和定量分析,为此使用的仪器叫X射线荧光光谱仪。由于X光具有一定波长,同时又有一定能量,因此,X射线荧光光谱仪有两种基本类型:波长色散型和能量色散型。图

X荧光光谱仪原理

  当能量高于原子内层电子结合能的高能X射线与原子发生碰撞时,驱逐一个内层电子而出现一个空穴,使整个原子体系处于不稳定的激发态,激发态原子寿命约为10-12~10-14s,然后自发地由能量高的状态跃迁到能量低的状态。这个过程   称为驰豫过程。驰豫过程既可以是非辐射跃迁,也可以是辐射跃迁.当较外层

X射线荧光光谱仪的全反射荧光

  如果n1>n2,则介质1相对于介质2为光密介质,介质2相对于介质1为光疏介质。对于X射线,一般固体与空气相比都是光疏介质。所以,如果介质1是空气,那么α1>α2,即折射线会偏向界面。如果α1足够小,并使α2=0,此时的掠射角α1称为临界角α临界。当α1

X射线荧光光谱仪X射线吸收的介绍

  当X射线穿过物质时,一方面受散射作用偏离原来的传播方向,另一方面还会经受光电吸收。光电吸收效应会产生X射线荧光和俄歇吸收,散射则包含了弹性和非弹性散射作用过程。  当一单色X射线穿过均匀物体时,其初始强度将由I0衰减至出射强度Ix,X射线的衰减符合指数衰减定律:  式中,μ为质量衰减系数;ρ为样

X射线荧光光谱仪X射线的衍射介绍

  相干散射与干涉现象相互作用的结果可产生X射线的衍射。X射线衍射与晶格排列密切相关,可用于研究物质的结构。  其中一种用已知波长λ的X射线来照射晶体样品,测量衍射线的角度与强度,从而推断样品的结构,这就是X射线衍射结构分析(XRD)。  另一种是让样品中发射出来的特征X射线照射晶面间距d已知的晶体

概述X射线荧光光谱仪X射线的产生

  根据经典电磁理论,运动的带电粒子的运动速度发生改变时会向外辐射电磁波。实验室中常用的X射线源便是利用这一原理产生的:利用被高压加速的电子轰击金属靶,电子被金属靶所减速,便向外辐射X射线。这些X射线中既包含了连续谱线,也包括了特征谱线。  1、连续谱线  连续光谱是由高能的带电粒子撞击金属靶面时受

X射线荧光光谱仪X射线散射的介绍

  除光电吸收外,入射光子还可与原子碰撞,在各个方向上发生散射。散射作用分为两种,即相干散射和非相干散射。  相干散射:当X射线照射到样品上时,X射线便与样品中的原子相互作用,带电的电子和原子核就跟随着X射线电磁波的周期变化的电磁场而振动。因原子核的质量比电子大得多,原子核的振动可忽略不计,主要是原

X荧光光谱仪的技术原理

X荧光光谱仪(XRF)由激发源(X射线管)和探测系统构成。X射线管产生入射X射线(一次X射线),激发被测样品,产生X荧光(二次X射线),探测器对X荧光进行检测。  X荧光光谱仪的技术原理:  元素的原子受到高能辐射激发而引起内层电子的跃迁,同时发射出具有一定特殊性波长的X射线,根据莫斯莱定律,荧光X

X射线荧光光谱仪的原理

X荧光光谱仪(XRF)由激发源(X射线管)和探测系统构成。X射线管产生入射X射线(一次X射线),激发被测样品。受激发的样品中的每一种元素会放射出二次X射线,并且不同的元素所放射出的二次X射线具有特定的能量特性或波长特性。探测系统测量这些放射出来的二次X射线的能量及数量。然后,仪器软件将探测系统所收集

X射线荧光光谱仪的原理

X射线荧光的物理原理:当材料暴露在短波长X光检查,或伽马射线,其组成原子可能发生电离,如果原子是暴露于辐射与能源大于它的电离势,足以驱逐内层轨道的电子,然而这使原子的电子结构不稳定,在外轨道的电子会“回补”进入低轨道,以填补遗留下来的洞。在“回补”的过程会释出多余的能源,光子能量是相等两个轨道的能量

X荧光光谱仪的工作原理

当能量高于原子内层电子结合能的高能X射线与原子发生碰撞时,驱逐一个内层电子而出现一个空穴,使整个原子体系处于不稳定的激发态,激发态原子寿命约为 (10)-12-(10)-14s,然后自发地由能量高的状态跃迁到能量低的状态.这个过程称为驰过程.驰豫过程既可以是非辐射跃迁,也可以是辐射跃迁.当较外层的电