利用HandyPEA和Clark氧电极阐明纳米CuO对微藻的毒害机理一

纳米材料的应用是21世纪最重要的革命之一。纳米材料已经被广泛应用于化妆品、汽车及各种物品的涂料、纺织品、农业杀菌剂等人类生活的各个领域。然而当纳米材料给人类生活带来便利的同时,它对生态环境、对植物、动物和人类的安全存在着潜在的威胁。纳米氧化铜(CuO NPs),作一种为纳米材料,被广地泛用于人类生活当中。近来人们发现CuO NPs可能会污染环境,对植物和其他生物造成毒害作用。前期人们认为,纳米材料对生物的伤害作用主要是因为它对细胞结构的破坏和导致氧化胁迫。然而,关于纳米CuO对生物最重要的两条初级代谢途径:光合作用和呼吸作用的影响,人们知之甚少。而且对于纳米CuO毒害造成的活性氧ROS大量产生的具体位点和机制并不清楚。CuO NPs对小球藻和栅藻光合放氧速率和呼吸耗氧速率的影响近期山东农业大学生命科学学院高辉远教授和王玮教授团队进行合作,利用英国Hansatech公司制造的Handy PEA多功能植物效率分析仪和Oxyther......阅读全文

溶解氧电极的维护和保养

台式溶解氧仪确保了在(超)低浓度的稳定性和准确性,在测量性能和使用环境等方面有很大的提高。溶氧仪主要用于化工化肥、冶金、环保、制药、生化、食品和自来水等溶液中溶解氧值的连续监测。 溶解氧电极的维护和保养: 1、1~2周应清洗一次溶解氧测定仪电极,如果膜片上有污染物,会引起测量误差。清洗时应小心,注意

SWAN氧电极的表面和消耗作用

经常使用SWAN氧电极仪器的用户对该设备应该并不陌生,SWAN氧电极在电解水制取氧气,研制氢/氧燃料电池和金属空气电池等方面得到应用。因氧的阴极过程是碱性和中性介质中金属腐蚀的主要共轭过程,故在金属防腐研究中有重要意义。那么SWAN氧电极的表面在使用中消耗起到了一个怎么不一样的作用?SWAN氧电极的

微囊藻毒素分类

水体产毒藻种主要为蓝藻,如微囊藻、鱼腥藻和束丝藻等。微囊藻可产生肝毒素,导致腹泻、呕吐、肝肾等器官的损坏,并有促瘤致癌作用。鱼腥藻和束丝藻可产生神经毒素,损害神经系统,引起惊厥、口舌麻木、呼吸困难甚至呼吸衰竭。目前,淡水藻类产生的毒素可分为多肽毒素、生物碱毒素和其他毒素三类。微囊藻毒素是环状的七氨酸

氢和析氧过程发生的原因和机理

就是说,实际的电极反应在进行的时候,会发生阴极电位比理论值低,阳极电位比理论值高的情况,这就叫做过电位.如果阴极析出的是氢气,就叫析氢过电位,析氧过电位也一样.过电位是由于电极的极化而产生的,就是说实际的电极反应已经偏离了理想的电极反应.  析氢过电位(一定程度上)可以用塔菲尔常数衡量,塔菲尔常数越

力学所提出基于应变梯度的微纳米颗粒输运机理

  微/纳米颗粒的定向输运在微电子机械系统以及生物医学领域有着重要的应用前景。在微纳米机械系统领域,对不同类型的纳米颗粒进行精确操控一直是一个复杂的科学技术问题,需要有新的驱动机理来促进纳米操控技术的进步。在生殖医学领域,受精卵在输卵管中的输运是一个决定受孕成功率以及早期生命健康发育的关键环节,其输

籼稻粳稻杂种不育分子机理阐明

  一般来说,水稻品种间亲缘关系越远,杂交优势越明显。据预测,如果籼稻和粳稻亚种间能育成超级杂交稻,可以比现有杂交水稻增产15%以上,因此,如何利用亚种间的超强优势一直受到育种家的关注。  7月26日,中国工程院院士万建民领衔、中国农业科学院和南京农业大学的科研团队联合攻关的一项研究,系统鉴定了引起

论述冷凝微滴自驱离纳米仿生界面机理

  近年来,中科院苏州纳米所高雪峰课题组对冷凝微滴自驱离纳米仿生界面的设计、制备、性能调控及潜在应用展开了一系列探索。日前,他们受邀对冷凝微滴自驱离纳米仿生界面最新研究进展进行了专题报道及评述,文章涉及功能界面的生物原型、机理及构筑原则、金属基功能界面的制备方法及其在能源相关应用领域的最新进展,还总

科研团队利用3D打印实现了微藻垂直固态培养

近日,四川大学轻工科学与工程学院特聘研究员周加境、研究员林炜团队与澳大利亚皇家墨尔本理工大学教授Joseph J Richardson团队合作在《先进材料》在线发表研究论文。团队提出了一种融合3D打印技术和垂直农业理念的微藻固态培养范式,通过3D打印技术构建了具有定制化结构的活性藻基凝胶,开发了用于

技术生物所发现等离子体放电可杀灭蓝藻细胞并降解毒素

  中科院合肥物质科学研究院技术生物与农业工程研究所研究员黄青带领的团队近年来一直致力于荷能粒子辐射作用于生物及生物分子的机理及应用生物光谱技术研究辐射条件下生物损伤的原初物理化学变化过程研究。近期,该研究组利用等离子体技术处理水体有害微生物,发现等离子体放电可高效杀灭蓝藻细胞并降解毒素。   蓝

NEPA21电转在工业微藻中高效无转基因靶向诱变的应用

Highly efficient transgene-free targeted mutagenesis and single-stranded oligodeoxynucleotide-mediated precise knock-in in the industrial microalg

微塑料和纳米塑料对土壤变形虫产生哪些影响?

纳米和微塑料已经成为一个严重的全球问题,威胁着我们的生活环境。已有的研究表明,许多生物体,包括细菌、动物和植物,都会受到微塑料的影响。然而,人们对土壤生物中一个重要的生态类群——原生生物是否会受到微塑料的影响还知之甚少。近日,中山大学环境科学与工程学院贺志理、舒龙飞团队就聚苯乙烯微塑料和纳米塑料对土

微塑料和纳米塑料对土壤变形虫产生影响

  纳米和微塑料已经成为一个严重的全球问题,威胁着我们的生活环境。已有的研究表明,许多生物体,包括细菌、动物和植物,都会受到微塑料的影响。然而,人们对土壤生物中一个重要的生态类群——原生生物是否会受到微塑料的影响还知之甚少。  近日,中山大学环境科学与工程学院贺志理、舒龙飞团队就聚苯乙烯微塑料和纳米

酶电极的反应机理

酶电极是将- 种或一种以上的生物酶涂布在通常的离子选择性电极的敏感膜上,通过酶的催化作用,试液中待测物向酶膜扩散,并与酶层接触发生酶催化反应,引起待测物质活度发生变化,被电极响应;或使待测物产生能被该电极响应的离子,间接测定该物质。如尿素酶电极是以NH3 电极为指示电极,把脲酶固定在NH3电极的敏感

利用纳米颗粒跟踪分析(NTA)技术对药物输送纳米颗粒...

利用纳米颗粒跟踪分析(NTA)技术对药物输送纳米颗粒进行直接观察、测定大小和计数简介 纳米颗粒在药物输送中的应用持续迅猛发展。 纳米颗粒可提供优良的药代动力学特性、长效和缓释以及特定细胞、组织或器官的靶定。 可利用的能用于疾病治疗的新生物活性化合物的发现速度在不断递减,这推动了人们对纳米颗粒

氧电极定义

  一种气体电极,如果以空气代替氧,即为空气电极。电极反应为2H2O+O2+4e-=4OH-,但此反应不易达平衡,故可逆氧电极难于实现。氧电极在电解水制取氧气,研制氢/氧燃料电池和金属空气电池等方面得到应用。因氧的阴极过程是碱性和中性介质中金属腐蚀的主要共轭过程,故在金属防腐研究中有重要意义。氯碱工

氧电极原理

  当在氧电极两极间施加电压并超过O2的分解电压(约为-0.2V)时,透过薄膜进入氯化钾溶液的溶解氧便在铂阴极上还原:  +4 +4e= 2  银阳极上则发生银的氧化反应:  4+4= 4AgCl+4e  此时电极间产生电解电流。由于氧在阴极被还原,而使阴极表面氧的浓度降低,于是被测溶液中的溶解氧便

氧电极简介

  一种气体电极,如果以空气代替氧,即为空气电极。电极反应为2H2O+O2+4e-=4OH-,但此反应不易达平衡,故可逆氧电极难于实现。氧电极在电解水制取氧气,研制氢/氧燃料电池和金属空气电池等方面得到应用。因氧的阴极过程是碱性和中性介质中金属腐蚀的主要共轭过程,故在金属防腐研究中有重要意义。氯碱工

析氢和析氧过程发生的原因和机理

就是说,实际的电极反应在进行的时候,会发生阴极电位比理论值低,阳极电位比理论值高的情况,这就叫做过电位.如果阴极析出的是氢气,就叫析氢过电位,析氧过电位也一样.过电位是由于电极的极化而产生的,就是说实际的电极反应已经偏离了理想的电极反应.  析氢过电位(一定程度上)可以用塔菲尔常数衡量,塔菲尔常数越

亚热带所利用复合抗菌肽缓解呕吐毒素对仔猪的毒害作用

  呕吐毒素是由镰刀菌产生的一种有毒次级代谢产物,严重影响动物健康和食品安全。在养猪生产中,呕吐毒素可引起呕吐、食欲下降、消化代谢紊乱、生长发育受阻、器官损伤,免疫功能异常等一系列毒害作用。从饲料生产过程控制霉菌毒素污染已有很多应对措施,包括种植过程中控制真菌的滋生、培育抗霉菌毒素的作物品种、物理法

溶氧电极与PH电极

我们认为一支好的溶氧电极*是膜的品质我们用的是原装美国BJ公司膜,保证膜的灵敏度及使用寿命。第二是铂金参比工艺制作精致,有经验师傅操作,保证每支电极的一致性。第三是参比液能与纯水离子强度匹配。好的配方能满足测量稳定性;在生产高温发酵溶氧电极的经验,用在纯水测量的溶氧电极生产上,保证使用质量及寿命关健

微囊藻毒素的分析步骤

①标准曲线的绘制。配制成0.30μg/L、0.50μg/L、1.00μg/L、2.00μg/L、5.00μgMC-RR和MC-LR标准使用液。分别取20μL注入高压液相色谱仪,测得各浓度的峰面以峰面积为纵坐标,浓度为横坐标,绘制标准曲线。②标准色谱图。分别注入样品20μL,以标样核对,记录色谱峰的保

微囊藻毒素的毒效应

动物模型实验表明,MC具有明显的嗜肝性,其污染与肝癌的发生、肝坏死以及肝内出血有密切关系,严重时甚至能引起受试生物死亡。MC跨膜转运需要ATP 依赖性的转运蛋白(ATP-dependent transporter)。对大鼠毒理学研究表明,胆汁酸转运蛋白(bileacid transporter)很可

营养吸收过程中高胺毒害的机理研究

营养吸收过程中高胺毒害的机理研究NH4+外流和GMPase的活性调节高胺抑制的根尖生长上图:NH4+对根尖生长素报告基因DR5:GUS的影响;NH4+对分生区和伸长区NH4+flux 的影响。 NH4+是主要的氮源,不仅是活细胞必需的营养,而且是代谢过程中普遍的中间产物。然而,过量的NH4+却对植物

遗传发育所阐明脊髓发育早期微环境对神经再生的作用

人体组织细胞处在独特的微环境中,这个微环境由细胞外基质、各种细胞、可溶性信号分子等共同组成。微环境在细胞信号传导、增殖和分化、形态和迁移、免疫应答以及营养代谢等方面发挥重要作用。深入研究细胞微环境对于了解生命奥秘和疾病治疗具有重要意义。脊髓损伤对于成年哺乳动物来说是一种毁灭性打击,由于成体脊髓组织存

微藻筛选技术研究

2.1 优良藻种的保存生产生物质燃料,优良藻种的获取至关重要。筛选出可用于规模化生产的高产、高品质的藻种,重点在于从自然界中直接分离筛选到新的原始藻株。世界上多个实验室已经筛选到大量藻种,并建立了藻种库,如UTEX 保藏有约3000 种藻种,CCMP 保藏藻种大于2500 种。但由于这些藻种已经培养

廖强:培育微藻-变废为宝

   廖强(左)指导学生做实验 受访者供图  工业废气、工厂废水、秸秆等污染物,通过微藻就可实现变废为宝,不仅能再次回收利用,还能产生燃料。近日,重庆大学廖强团队凭借这一研究入选“全国高校黄大年式教师团队”。该团队成员都说,这份荣誉的取得离不开团队负责人廖强教授20年的创新与坚持。  巧用太阳能 让

MPEA参与双酚A影响黄瓜叶片光合特性机理研究

    双酚A(BPA)是工业生产树脂、塑料以及涂料的原料,尽管BPA半衰期较短,但因其大规模的生产和广泛使用,目前BPA在环境中已无所不在,已成为全球性环境问题。BPA不仅影响动物的内分泌系统,也抑制植物叶片的光合作用。在以往BPA对高等植物的研究中,均使用灌根的方法进行处理。这种研究方法不能区分

培育“仿真大脑”,阐明疾病机理

  深入剖析人类大脑,我们会发现大脑的每一部分都有着令人惊叹的组织构造。大量神经束构成神经传导通路使神经冲动得以逐级准确传递。大脑皮层(灰质)内逐层精确分布的神经元彼此紧密连接形成复杂而精确的神经网络。如此有序的构造说明每一个神经元的分裂和生长都被精确调控着。  一旦这种调控机制遭到破坏,那后果将十

溶解氧的测定方法(一)膜电极法

一、方法原理  本方法所采用的电极由一小室构成,室内有两个金属电极并充有电解质,用选择性薄膜将小室封闭住。实际上水和可溶解物质离子不能透过这层膜,但氧和一定数量的其他气体及亲水性物质可透过这层薄膜。将这种电极浸入水中进行溶解氧测定。  因原电池作用或外加电压使电极间产生电位差。这种电位差,使金属离子

溶解氧电极的结构原理及溶氧电极的使用

溶氧电极:溶氧(DO)是溶解氧(Dissolved Oxygen)的简称, 是表征水溶液中氧的浓度的参数溶氧电极是一种基于极谱原理的测定溶解在液体中的氧的电流型电极。1.    溶氧电极的分类: 测定DO的方法有多种:如化学Winkler 法,电极方法,质谱仪等。这里主要介绍电极方法。溶氧电极zui