利用HandyPEA和Clark氧电极阐明纳米CuO对微藻的毒害机理一

纳米材料的应用是21世纪最重要的革命之一。纳米材料已经被广泛应用于化妆品、汽车及各种物品的涂料、纺织品、农业杀菌剂等人类生活的各个领域。然而当纳米材料给人类生活带来便利的同时,它对生态环境、对植物、动物和人类的安全存在着潜在的威胁。纳米氧化铜(CuO NPs),作一种为纳米材料,被广地泛用于人类生活当中。近来人们发现CuO NPs可能会污染环境,对植物和其他生物造成毒害作用。前期人们认为,纳米材料对生物的伤害作用主要是因为它对细胞结构的破坏和导致氧化胁迫。然而,关于纳米CuO对生物最重要的两条初级代谢途径:光合作用和呼吸作用的影响,人们知之甚少。而且对于纳米CuO毒害造成的活性氧ROS大量产生的具体位点和机制并不清楚。CuO NPs对小球藻和栅藻光合放氧速率和呼吸耗氧速率的影响近期山东农业大学生命科学学院高辉远教授和王玮教授团队进行合作,利用英国Hansatech公司制造的Handy PEA多功能植物效率分析仪和Oxyther......阅读全文

利用Handy-PEA和Clark氧电极阐明纳米CuO对微藻的毒害机理-一

纳米材料的应用是21世纪最重要的革命之一。纳米材料已经被广泛应用于化妆品、汽车及各种物品的涂料、纺织品、农业杀菌剂等人类生活的各个领域。然而当纳米材料给人类生活带来便利的同时,它对生态环境、对植物、动物和人类的安全存在着潜在的威胁。纳米氧化铜(CuO NPs),作一种为纳米材料,被广地泛用于人类生

利用Handy-PEA和Clark氧电极阐明纳米CuO对微藻的毒害机理-二

CuO NPs处理后藻细胞内活性氧和抗氧化酶活的变化及活性氧的具体产生位点CuO NPs对小球藻和栅藻细胞超微结构的影响该研究表明微藻的光合机构比呼吸机构对CuO NPs的毒害更敏感,光合电子传递链中的放氧复合体(OEC)最易受到CuO NPs的伤害。CuO NPs对OEC的伤害导致光合电子传递受阻

Handy-PEA和氧电极阐明干燥发菜补水后光合活性恢复的机理

利用Handy PEA和氧电极阐明干燥发菜补水后光合活性恢复的机理发菜(拉丁学名:Nostoc flagelliformeBorn. et Flah.),中文学名:发状念珠藻,是蓝藻门念珠藻目的一种藻类,广泛分布于世界各地(如中国、俄罗斯、索马里、美国等)的沙漠和贫瘠土壤中,因其色黑而细长,如人的头

Clark氧电极电极构造

  薄膜氧电极最早由L.C.Clark研制(1953),故亦称Clark氧电极。 [2] 氧电极实际上是一个电化学电池,由镶嵌在绝缘材料上的银极和铂极构成。银极为阳极,一般制成圆环状,作为参比电极,银极的面积要尽可能大一些,以降低电极表面电流密度,减少阳极的极化现象,使其电极电位不受外加电压的影响。

Clark氧电极电极原理

  当在氧电极两极间施加电压并超过O2的分解电压(约为-0.2V)时,透过薄膜进入氯化钾溶液的溶解氧便在铂阴极上还原:   +4 +4e= 2  银阳极上则发生银的氧化反应:  4 +4 = 4AgCl+4e  此时电极间产生电解电流。由于氧在阴极被还原,而使阴极表面氧的浓度降低,于是被测溶液中的溶

Clark氧电极简介

  Clark氧电极是为测定水中溶解氧含量而设计的一种极谱电极,早在二十世纪三十年代就有人用裸露的银-铂电极研究藻类的光合作用。自从五十年代薄膜氧电极问世以来,又大大扩展了它的应用范围。由于它具有灵敏度高、反应快、可以连续测量、记录,能够追踪反应的动态变化过程等优点,因而在叶绿体及线粒体悬浮液的光合

MPEA和氧电极应用

氧苯酮是多数防晒霜中的一种主要的防紫外线的有效成分。也被广地泛添加在许多个人护理产品中。最近有学者报道,它可以造成珊瑚的白化,导致动物的激素分泌、胚胎发育及生殖受精等过程的异常。因此,最近美国夏威夷州和不少沿海岛国通过相关的法律,禁止使用含有氧苯酮的防晒霜。      迄今为止,关于氧苯酮研究主要集

Clark氧电极参数实例

  品牌  Hansatech  国内外市场上,氧电极制造商鱼龙混杂,水平参差不齐。不同价位、不同档次的氧电极适合于不同的应用领域。按照clark氧电极原理制造的各种监测设备的价格从人民币几百元到几十万元不等,差距非常大。在这里,我们以国际上认可度最高的Hansatech公司生产的clark氧电极作

Clark氧电极没氧优缺点

  用氧电极法测定水中溶解氧以研究光合、呼吸,可以解决一些常规的检测技术不能解决或难解决的问题,因而与微量检压技术(瓦氏呼吸计)相比,该法具有以下优点:  A. 灵敏度极高 用该法检测水中溶解氧,比微量检压法的灵敏度高出10倍以上。  B. 测定快速 一次测定可在数分钟内完成。  C. 可迅速追踪溶

如何选择合适的氧电极(Clark电极)?

如何选择合适的氧电极(Clark电极)目前国际上的氧电极(Clark电极)主要有Oxytherm、Oxygraph、Chlorolab-2、Chlorolab-3、Oxyview、Leaflab-2等多款氧电极(英国Hansatech公司)。氧电极的功能类似,略有差别。如何才能选择合适自己实验的氧电

液相氧电极(Clark电极)的正确操作及其注意事项

液相氧电极(Clark电极)的正确操作及其注意事项以下是如何正确使用氧电极和在使用过程中应该注意的问题。1. 氧电极的准备首先要认真仔细的清洁电极,清洁电极是非常重要的一个环节,因为这直接影响到电极对氧信号反应的灵敏度。然后按照说明书的步骤安装电极膜。2.电极的极化当按照说明书的要求安装好氧电极测定

Handy-PEA测定快速叶绿素a荧光动力学曲线OJIP对紫茎泽兰...

Handy PEA测定快速叶绿素a荧光动力学曲线OJIP对紫茎泽兰的耐热性进行研究      在过去20年间,基于生物膜中能量流动理论的快速叶绿素a荧光动力学OJIP曲线和JIP-test分析,具有无损、精确、快速的特点,现已经广泛应用于植物逆境生理的研究。OJIP曲线对各种环境的改变非常敏感,如光

揭示纳米二氧化钛与五价砷联合暴露对海洋微藻毒性机理

  二氧化钛纳米颗粒(Titanium dioxide nanoparticles, nano-TiO2)因其独特的理化性质吸引着人们的关注,并被广泛应用于各个领域,快速的发展及其潜在的生态风险使其成为备受关注的新兴污染物。此外,二氧化钛纳米颗粒尺寸小,比表面积大,能通过静电引力和化学键作用吸附环境

研究纳米二氧化钛与五价砷联合暴露对海洋微藻毒性机理

  二氧化钛性质稳定,大量用作油漆中的白色颜料,它具有良好的遮盖能力,和铅白相似,但不像铅白会变黑;它又具有锌白一样的持久性。二氧化钛还用作搪瓷的消光剂,可以产生一种很光亮的、硬而耐酸的搪瓷釉罩面。  二氧化钛纳米颗粒(Titanium dioxide nanoparticles, nano-TiO

青岛能源所提出利用丝状微藻产油新思路

  利用能源微藻生产生物柴油,其核心在于大规模、高效、低成本培养微藻以获得大量的生物质。目前,研究产油藻主要集中在单细胞微藻为主,在室外规模培养时,由于敌害生物(主要是原生动物)对这些尺寸细小(通常直径在1-10微米)的单细胞微藻的摄食常导致培养失败,并且单细胞微藻的采收困难且成本较高。因此,获得高

青岛能源所微藻产油遗传机理和进化机制研究取得新进展

  近日,中国科学院青岛生物能源与过程研究所在微藻产油的遗传和进化机制研究方面取得新进展。研究人员以微拟球藻为模式生物,较为系统地阐明了高产油性状的遗传基础及进化机制,为高产油藻的筛选和育种提供了坚实基础和崭新思路。相关成果已于2014年1月9日在线发表于PLoS Genetics。   自然

线粒体疾病发病机理阐明

  有望开发针对性治疗药物   科技日报东京1月28日电 日本熊本大学魏范研准教授、东京大学铃木勉教授的研究小组最新研究发现,一种被称作牛磺酸的功能性氨基酸在线粒体内外蛋白质的生产和保质中具有重要作用,实验表明,通过特定的化学物质维持蛋白质质量,可以改善线粒体疾病的症状。   线粒体是真核细胞内

线粒体疾病发病机理阐明

  日本熊本大学魏范研准教授、东京大学铃木勉教授的研究小组最新研究发现,一种被称作牛磺酸的功能性氨基酸在线粒体内外蛋白质的生产和保质中具有重要作用,实验表明,通过特定的化学物质维持蛋白质质量,可以改善线粒体疾病的症状。  线粒体是真核细胞内的“能量制造工厂”,其中含有数千种蛋白质,维持着线粒体的各种

线粒体疾病发病机理阐明

  日本熊本大学魏范研准教授、东京大学铃木勉教授的研究小组最新研究发现,一种被称作牛磺酸的功能性氨基酸在线粒体内外蛋白质的生产和保质中具有重要作用,实验表明,通过特定的化学物质维持蛋白质质量,可以改善线粒体疾病的症状。  线粒体是真核细胞内的“能量制造工厂”,其中含有数千种蛋白质,维持着线粒体的各种

研究阐明VC对肾癌细胞选择性杀伤机理

  近日,中科院广州生物医药与健康研究院西班牙籍学者米格尔领衔的研究团队发现了维生素C对肾癌细胞产生细胞毒性及其选择性杀伤作用产生的机理。该研究对于肿瘤的选择性治疗具有重要意义,相关研究发表于《生物化学杂志》。  维生素C在癌症治疗中的作用已经被研究了几十年,但维生素C的细胞毒性以及这种选择性杀伤作

微藻细胞先酯交换再萃取制生物柴油的机理研究

利用生长快和含油高的微藻生物质转化制取生物柴油,对解决石油严重短缺和环境污染严重的矛盾问题具有重要意义。本文以微藻湿生物质为研究对象,提出了微藻细胞先酯交换和酯化促进正己烷萃取制生物柴油的创新原理方法;揭示了瞬时弹射式蒸汽爆破细胞壁提取微藻油脂的微观机理;利用连续流亚临界水实现了无溶剂高效分离微藻油

液/液界面氧还原机理的混合超微电极和质谱研究

  “ MechanisticStudy of Oxygen Reduction at Liquid/Liquid Interfaces by HybridUltramicroelectrodes and Mass Spectrometry”  质子耦合电子转移(PCET)反应在各种界面(液体/膜、

溶氧电极的标定和维护

  一、电极的标定:   每只 氧电极 都有自己的零点和斜率,而且随着使用,电解液会逐渐消耗,零点和斜率就会发生变化。标定就是为了得到电极的真实零点和斜率。   斜率标定:在已知氧浓度的空气饱和去离子水或空气中标定电极的斜率。这时需要知道大气压力和温度,在空气中还要知道湿度。   

溶氧电极的标定和维护

 一、电极的标定:   每只 氧电极 都有自己的零点和斜率,而且随着使用,电解液会逐渐消耗,零点和斜率就会发生变化。标定就是为了得到电极的真实零点和斜率。   斜率标定:在已知氧浓度的空气饱和去离子水或空气中标定电极的斜率。这时需要知道大气压力和温度,在空气中还要知道湿度。   两点标定:在零氧环境

溶氧电极的标定和维护

  一、电极的标定:   每只 氧电极 都有自己的零点和斜率,而且随着使用,电解液会逐渐消耗,零点和斜率就会发生变化。标定就是为了得到电极的真实零点和斜率。   斜率标定:在已知氧浓度的空气饱和去离子水或空气中标定电极的斜率。这时需要知道大气压力和温度,在空气中还要知道湿度。   

溶氧电极的标定和维护

  一、电极的标定:   每只 氧电极 都有自己的零点和斜率,而且随着使用,电解液会逐渐消耗,零点和斜率就会发生变化。标定就是为了得到电极的真实零点和斜率。   斜率标定:在已知氧浓度的空气饱和去离子水或空气中标定电极的斜率。这时需要知道大气压力和温度,在空气中还要知道湿度。   

微囊藻计数

摘要:微囊藻计数是藻类监测实验工作中一件困难的工作。本文使用迅数Algacount藻类计数仪进行微囊藻细胞计数,大大缩短了计数所需的时间和人力,提高了计数效率。关键词: 有囊藻类 藻细胞 微囊藻计数 藻类计数仪藻类监测是一项长期而重要的工作。实验人员需要对江河湖海等各种水体系统是否发生水华或赤潮做出

氧电极的电极分类原理

  一、铅酸电池:  1.二氧化铅电极的自放电  (1).析氧引起的自放电(2).与合金极板接触腐蚀,二氧化铅被还原并形成硫酸铝...(3).与氧气作用(4).与杂质作用。  2.铅电极的自放电  铅电极的自放电来自析氢和吸氧腐蚀,但由于氧气在硫酸中的溶解度小,而且可以除去.  电解质溶液中的氢离子

溶解氧电极的概念和组成

溶解氧电极采用极谱式电极,阳电极为Ag/AgCl、阴电极为铂金(Pt)组成,两者之间充满特殊成份的电解液。由硅橡胶渗透膜包裹于电极四周。

溶解氧电极的维护和保养

台式溶解氧仪确保了在(超)低浓度的稳定性和准确性,在测量性能和使用环境等方面有很大的提高。溶氧仪主要用于化工化肥、冶金、环保、制药、生化、食品和自来水等溶液中溶解氧值的连续监测。 溶解氧电极的维护和保养: 1、1~2周应清洗一次溶解氧测定仪电极,如果膜片上有污染物,会引起测量误差。清洗时应小心,注意