Antpedia LOGO WIKI资讯

CRISPR触发的内源Oct4或Sox2基因位点染色质重塑激...(一)

CRISPR触发的内源Oct4或Sox2基因位点染色质重塑激活细胞重编程题目:CRISPR-Based Chromatin Remodeling of the Endogenous Oct4 or Sox2 Locus EnablesReprogramming to Pluripotency期刊:Cell stem cell影响因子:23.394主要技术:CRISPR-dCas9-VP64激活系统、诱导性多能干细胞构建、原代细胞制作、iPS鉴定研究背景终末分化的成体细胞逆分化,形成多能干细胞状态的过程称为细胞重编程(Cell reprogramming)。在2006年,日本科学家山中伸弥(Shinya Yamanaka)发表诱导性多能干细胞(iPS, induced pluripotent stem cells)构建技术,利用逆转录病毒,把OSKM(OCT4, SOX2,KLF4 and C-myc)四因子在体细胞中......阅读全文

CRISPR触发的内源Oct4或Sox2基因位点染色质重塑激...(一)

CRISPR触发的内源Oct4或Sox2基因位点染色质重塑激活细胞重编程题目:CRISPR-Based Chromatin Remodeling of the Endogenous Oct4 or Sox2 Locus EnablesReprogramming to Pluripotency期刊:C

CRISPR触发的内源Oct4或Sox2基因位点染色质重塑激...(二)

3. CRISPR-dCas9-SunTag-VP64系统单独对Sox2基因进行内源激活,也能有效获得iPS研究者单独选取了能对Sox2进行激活的SgRNA进行iPS诱导,发现在有效激活内源Sox2基因表达的情况下,能成功得到诱导性多能干细胞,并能稳定增殖传代。得到iPS通过体内体外实验,如干细胞基

CRISPR触发的内源Oct4或Sox2基因位点染色质重塑激活细胞

  题目:CRISPR-Based Chromatin Remodeling of the Endogenous Oct4 or Sox2 Locus Enables   Reprogramming to Pluripotency   期刊:Cell stem cell   影响因子:23.3

CRISPR触发的内源Oct4或Sox2基因位点染色质重塑激活细胞

  题目:CRISPR-Based Chromatin Remodeling of the Endogenous Oct4 or Sox2 Locus Enables   Reprogramming to Pluripotency   期刊:Cell stem cell   影响因子:23.3

挑战“诺奖技术”,CRISPR可“生产”多能干细胞

图片来源:Nature Communications7月6日,发表在Nature Communications杂志上题为“Human pluripotent reprogramming with CRISPR activators”的研究中,由赫尔辛基大学Timo Otonkoski博士带领的团队首

吉林大学Cell子刊文章:细胞重编程的路障

  来自吉林大学、上海交通大学等机构的研究人员在新研究中证实,SMC1所支配的染色质内袢环(Intrachromosomal Looping)是细胞重编程过程中激活内源性多能基因的必要条件。这一研究发现为深入了解细胞重编程分子机制,以及开发出新的诱导多能干细胞(iPSC)技术提供了一个新研究方

吉林大学Cell子刊文章:细胞重编程的路障

  来自吉林大学、上海交通大学等机构的研究人员在新研究中证实,SMC1所支配的染色质内袢环(Intrachromosomal Looping)是细胞重编程过程中激活内源性多能基因的必要条件。这一研究发现为深入了解细胞重编程分子机制,以及开发出新的诱导多能干细胞(iPSC)技术提供了一个新研究方向

CRISPR新工具开辟更多可编辑基因组位点

  据最新一期《科学进展》报道,美国麻省理工学院(MIT)研究人员发现了一种可靶向几乎一半基因组位点的Cas9酶,从而极大地扩展了基因编辑工具的适用范围。  尽管基因编辑工具近年来取得了相当大的成功,但CRISPR-Cas9在基因组上可访问的位点数量仍然有限。这是因为CRISPR需要在基因组靶向位点

基因插入位点和模式实验(一)

实验材料 dCTP试剂、试剂盒 乙醇次氯酸钠β-葡萄糖醛酸酶基因活性测定液溴化乙锭仪器、耗材 培养室MS 培养基实验步骤 一、转基因插入位点的数目第一代( T0)转基因植株外源基因的插入位点数目,一般都是通过遗传方法进行鉴定。虽然遗传分析可以在任何世代进行,但是一般选择转基因植株自交,或与野

盘点全基因组检测CRISPR脱靶位点的几种重要技术

  在2013年,来自麻省总医院的研究人员发现使用CRISPR-Cas RNA引导性核酸酶的一个重要局限:会在预期靶点以外的位点上生成多余的DNA突变。此后陆续有研究直接说明了CRISPR/Cas9存在严重的脱靶性,即该技术可以发生非特异性切割,引起基因组非靶向位点的突变,这样会造成研究结果的不确定