双色同步成像在荧光共定位等成像实验中的应用(三)
扩展阅读:GCaMP钙离子成像中,视网膜上两个神经细胞表现出相反的钙离子浓度变化(A浓度高的时候B浓度低,B浓度变高时A浓度下降),如何采用Reslice方法在平面图中反映出这种关系,敬请参阅链接中文章第14-16步:点击进入了解>> W-View GEMINI应用实例4——心肌细胞搏动时钙离子浓度的变化与细胞收缩在时间上的先后分析 相机:滨松Flash 4.0 V2物镜:40x,NA 0.6附件:滨松W-View GEMINI曝光时间:30 ms 除了两个不同颜色的荧光同步成像之外,W-View&n......阅读全文
双色同步成像在荧光共定位等成像实验中的应用(三)
扩展阅读:GCaMP钙离子成像中,视网膜上两个神经细胞表现出相反的钙离子浓度变化(A浓度高的时候B浓度低,B浓度变高时A浓度下降),如何采用Reslice方法在平面图中反映出这种关系,敬请参阅链接中文章第14-16步:点击进入了解>> W-View GEMI
双色同步成像在荧光共定位等成像实验中的应用(一)
荧光的共定位是当今生物显微成像中一个极为常见的技术,两个或者更多种不同颜色的荧光探针被用来标记不同的结构/位点,使得其相互关系得以明晰地在合并的图像上展现。随着研究者对于实验的要求越来越高,这些荧光共定位的成像逐渐被希望能用于荧光强度高速变化或者样品本身位置不断变化的实验中,比如活动的斑马鱼、线虫体
双色同步成像在荧光共定位等成像实验中的应用(二)
双色同步成像——一台Flash 4.0 LT相机作两台用 采用W-View GEMINI这样的双色分光附件将两种颜色的信号成像到一台相机的一个感光芯片上很好地解决了同步成像的时间问题,但对于绝大多数的相机,整个感光芯片只能设置一个曝光时间,当两个颜色的信号强度相差较大时将很难同时将两个颜色的成像信噪
荧光显微成像在生物分析中的应用
论文摘自山东师范大学化学化工与材料科学学院,济南 250014摘 要 荧光显微镜与荧光光谱仪耦合系统可获取显微荧光成像及微区荧光光谱、荧光寿命的测定信息,广泛应用于细胞、组织中蛋白质的结构功能分析,核酸的识别检测,金属离子、自由基的定量测定,以及纳米生物探针的研制等生物分析研究的热点领域。1 引 言
荧光团共定位
当研究荧光团共定位时,要考虑的最重要的一点是:确保样品标记的质量最好。抗体和合成荧光团都应进行特异性的分析和选择,背景要低、没有交叉活性。为了降低串色影响,发射光谱分得比较开的荧光探针组合最适合做共定位实验。要做合适的 control 实验,包括用每个探针单独标记样品及未标记的只有自发荧光的样品,都
新型双荧光共定位系统开发成功
北京航空航天大学生物与医学工程学院和北京大学化学与分子工程学院等研究人员以绿色荧光蛋白(GFP)和红色荧光蛋白(RFP)为材料,开发出一种新的用于活细胞内检测蛋白质相互作用的检测系统。研究论文近期发表在《科技导报》上。 荧光蛋白是目前细胞分子生物学广泛应用的分子探针,在细胞生物学、组织工程、基
高光谱成像在植被研究中的应用
高光谱超多波段的成像光谱数据为植被分类识别提供了比以往更加详细的信息,基于高光谱遥感的植被识别精度远远超出了常规所能获取信息的精确性和可靠性,体现出高光谱在植被信息获取能力方面的巨大优势。 高光谱成像还应用于生态环境梯度制图、光合作用色素含量提取、植被干物质信息提取、植被生物多样性监测、土壤属
高光谱成像在海洋研究中的应用
高光谱成像是当前海洋成像前沿领域。由于中分辨率成像光谱仪具有光谱覆盖范围广、分辨率高和波段多等许多优点,因此已成为海洋水色、水温的有效探测工具。它既可用于海水中叶绿素浓度、悬浮泥沙含量、某些污染物和表层水温探测,还可用于海冰、海岸带等的探测。 国内海洋遥感应用基础研究主要是一些数学模型的构建。
高光谱成像在地质调查中的应用
区域地质制图和矿产勘探是高光谱技术主要的领域也是高光谱成像应用中最成功的一个领域。如今地面光谱仪主要有澳大利亚的PIMA,美国的ASD,GER,热红外FT-IR等,国内的有中科院研发的OMIS系列,PHI等。 利用高光谱遥感(含热红外高光谱)进行矿物识别可分为3个层次:矿物种类识别、矿物含量识
太赫兹成像在工艺检测中的应用(二)
因此,对于这种结构的未来传感应用,直接访问近场特性是非常重要的,近场特性决定了传感器与被检测物之间相互作用的特性。又如,密集的共振结构间耦合作用——引起电磁感应透明效应——可以在相互作用的结构中被直接检测。有实例结果表明,通过将周期性超材料的长程耦合状态调谐到所涉及的超分子的各个共振频率,可
太赫兹成像在工艺检测中的应用(一)
太赫兹成像系统经过过去十来年的发展业已成熟。推动其发展的一个重要驱动力是集成光学技术在通信领域的使用,实现了紧凑型、高性能时域光谱(TDS)系统。在现代太赫兹TDS系统中,光纤耦合集成元件已经完全取代了分布式自由空间光学器件。这不仅意味着在空间需求方面具有优势,也有利于将太赫兹测量性能集成到
共定位中用到免疫荧光,“共定位”是什么
共定位的定义:共定位是对样品内两种荧光标记的信号共同分布的位置进行分析。 共定位就如字面意思上所说的,只能够表明蛋白A和B都在此细胞有表达,并且在同样的细胞内位置/细胞器。相关短语:共定位通道 PDM Channel细胞共定位 Cellular co localization细胞内共定位信息 cel
科研中的尖兵利器浅析——共聚焦篇(上)
在科研的战场上,你是否还在苦于寻找更出色的成像技术与手段?你是否还在纠结观察到的实验现象能否真实的反映样品的情况?你是否还在为图像质量差而不能发表高质量的论文而苦恼?“工欲善其事必先利其器”,共聚焦将为你更好的解决这些问题。与传统的宽场成像相比,共聚焦作为一种高端的显微成像术,以其出色的成像质量及三
近红外脑功能成像在脑卒中的研究应用(三)
而他们在2014年对比了正常人和不同程度卒中患者皮质激活发现,随着运动功能恢复,卒中患者的运动激活向双侧脑激活的转变,这是由于同侧也发生激活的加入引起的。我们还在慢性期轻度偏瘫患者中观察到明显的对侧优势模式。这表明中风后运动功能恢复与运动相关激活的侧向平衡恢复有关,并且发现在所有中度偏瘫患者的同侧半
高光谱成像在大气科学研究中的应用
高光谱成像具有非常高的光谱分辨率它不仅可以探测到常规成像更精细的被探测物的信息,而且也能探侧到大气吸收特征。 大气的分子和粒子的成份在反射光谱波段反映非常的强烈能够被高光谱仪器监测到。云盖制图,云顶高度和云层状态参数估算,大气水汽含量与分布估算,气溶胶含量估计以及大气光学特性评价等是高光谱成像
近红外脑成像在精神疾病鉴定中的应用
精神疾病,是指在各种生物学、心理学以及社会环境因素影响下,大脑功能失调,导致认知、情感、意志和行为等精神活动出现不同程度障碍的疾病。1982年我国对12地区的城乡12000户, 共计51982人进行筛查, 结果显示:“在15岁及以上 (38136人) 人口的精神障碍时点患病率为10.54‰。
共定位(免疫荧光)是什么
免疫荧光可以用于共定位,但也可以用于很多其他应用。共定位不能够说是免疫荧光的主要用途。一楼回答有助于理解共定位,但是“加上红色/绿色荧光蛋白的标签”这种说法并不是免疫荧光的做法。在免疫荧光中,与目标蛋白相结合的是带有荧光分子基团的抗体,此种抗体虽然发荧光,但不称为荧光蛋白。另外,共定位不能够用于证明
共定位(免疫荧光)是什么
免疫荧光可以用于共定位,但也可以用于很多其他应用。共定位不能够说是免疫荧光的主要用途。一楼回答有助于理解共定位,但是“加上红色/绿色荧光蛋白的标签”这种说法并不是免疫荧光的做法。在免疫荧光中,与目标蛋白相结合的是带有荧光分子基团的抗体,此种抗体虽然发荧光,但不称为荧光蛋白。另外,共定位不能够用于证明
共定位(免疫荧光)是什么
共定位的定义:共定位是对样品内两种荧光标记的信号共同分布的位置进行分析。 共定位就如字面意思上所说的,只能够表明蛋白A和B都在此细胞有表达,并且在同样的细胞内位置/细胞器。相关短语:共定位通道 PDM Channel细胞共定位 Cellular co localization细胞内共定位信息 cel
共定位(免疫荧光)是什么
共定位的定义:共定位是对样品内两种荧光标记的信号共同分布的位置进行分析。 共定位就如字面意思上所说的,只能够表明蛋白A和B都在此细胞有表达,并且在同样的细胞内位置/细胞器。相关短语:共定位通道 PDM Channel细胞共定位 Cellular co localization细胞内共定位信息 cel
光声成像在微脉管系统成像及定量分析中的应用
光声成像是近年来发展起来的一种无损医学成像方法,它结合了纯光学成像的高对比度特性和纯超声成像的高穿透深度特性,可以提供高分辨率和高对比度的组织成像。美国Endra公司研发的小动物光声成像系统具备纳摩尔级的灵敏度以及280um的高分辨率,可探测表皮20mm以下的光声信号。并可用于小动物分子成像的定量分
高光谱成像在无脊椎动物研究中的应用
近端成像遥感技术可根据特定的外部反射特征对生物体进行表征和特征描述。这些成像技术引起了人们的关注,并广泛应用于植物和动物的生态、系统、进化以及生理研究中。然而,重要的因子可能会影响质量和体反射率特征的一致性,从而影响这些技术作为非侵入式表型和特征的部分能力。我们从3种昆虫中获得了高光谱体反射率,并研
一般在共定位中用到免疫荧光,“共定位”是什么
共定位的定义:共定位是对样品内两种荧光标记的信号共同分布的位置进行分析。 共定位就如字面意思上所说的,只能够表明蛋白A和B都在此细胞有表达,并且在同样的细胞内位置/细胞器。相关短语:共定位通道 PDM Channel细胞共定位 Cellular co localization细胞内共定位信息 cel
一般在共定位中用到免疫荧光,“共定位”是什么
共定位的定义:共定位是对样品内两种荧光标记的信号共同分布的位置进行分析。 共定位就如字面意思上所说的,只能够表明蛋白A和B都在此细胞有表达,并且在同样的细胞内位置/细胞器。相关短语:共定位通道 PDM Channel细胞共定位 Cellular co localization细胞内共定位信息 cel
荧光探针研究获进展-实现单一波长激发双色荧光成像
近日,中国科学院深圳先进技术研究院副研究员储军主持研发的新型大斯托克斯位移荧光蛋白取得突破,实现了在小鼠脑内单一波长激发双色荧光成像和高灵敏的生物发光成像。该工作以A bright cyan-excitable orange fluorescent protein facilitatesdual
共聚焦图中对荧光团共定位
正如上面所讨论的,在共聚焦图中对荧光团共定位的定量测定,可通过散点图和感兴趣区域的信息获得。从整个散点图的信息,可获得很多变量值。Pearson′s 系数就是用于分析整个散点图的诸多变量中的一个,为描述两幅图之间重叠程度,在识别一幅图像和另一幅图像的匹配程度上, Pearson′s, R(r)系数是
手把手教会荧光共定位分析
ImageJ(https://imagej.nih.gov/ij/ )是美国NIH基于Java开发的免费图像处理软件。今天的主题是共定位分析,那么什么是共定位(Colocalization)?从物理角度来看,它意味着两种或多种颜色荧光分子发出的颜色占据图像中的相同像素。在生物学上,共定位是指两个或多
心脏磁共振成像在室性心律失常诊治中的应用
恶性心律失常是严重威胁患者生命的一大类疾病,其中,室性心动过速(室速)或心室颤动是心脏性猝死最常见的原因。 在发达国家,发生率可达每年 1/1 000-2/1 000.室性心律失常的发生常有器质性心脏病的基础,在西方国家,30 岁以上人群发生心脏性猝死或者室速最常见的原因为冠心病,而 3
多光子显微镜成像:无标记成像在发育生物学中的应用
光学成像可用于发育生物学,从而了解生物体的形成、揭示组织再生机制、认识并管理先天性缺陷和胚胎衰竭等。其中最受关注的两个问题:一是心脏在早期发育中会发生剧烈的形态变化,其潜在功能和生物力学方面仍有待研究;二是中枢神经系统发育异常会导致先天性的疾病,所以需要从动力学、功能和生物力学等方面对大脑发
有机双光子荧光染料在生物成像中的应用取得新进展
传统的荧光分子多数会有聚集诱导淬灭效应(Aggregation Caused Quenching, ACQ),限制了其应用。聚集诱导发光(Aggregation Induced Emission, AIE)荧光分子不同于传统的荧光分子,在聚集的条件下产生荧光,具有生物相容性好、背景荧光较低等特点