西安光机所微纳光子学亚波长慢光研究取得重要进展
表面等离子体激元是指在金属表面存在的自由振动电子与光子相互作用而产生的沿着金属表面传播的电磁波,具有巨大的局部场增强效应。它能够突破传统的衍射极限,从而实现在纳米尺度上对光子的操纵和调控。表面等离子体光学为实现全光集成,发展更快、更小和更高效的新型纳米光子器件提供了一条有效的途径,因而近年来受到了物理学、光学、材料科学和纳米科技等各领域研究人员的广泛关注。 慢光是一项使光速减慢以至于能够停滞或存储光的技术,是克服全光缓存困难的最佳方式之一。此外,慢光技术在数据精密同步、全光交换、量子光学以及增强线性与非线性光学特性等领域有着广泛的用途。对可控慢光的研究一直倍受研究人员的关注。为实现光子器件的小型化,基于微纳结构的慢光研究现已成为光子学领域研究的热点问题。以往研究的慢光器件对于入射脉冲有较大的二阶及高阶色散,导致脉冲被减慢的同时发生严重畸变,这给实际的应用带来不便。 针对此问题,中科院西安光学精密机械......阅读全文
西安光机所微纳光子学亚波长慢光研究取得重要进展
表面等离子体激元是指在金属表面存在的自由振动电子与光子相互作用而产生的沿着金属表面传播的电磁波,具有巨大的局部场增强效应。它能够突破传统的衍射极限,从而实现在纳米尺度上对光子的操纵和调控。表面等离子体光学为实现全光集成,发展更快、更小和更高效的新型纳米光子器件提供了一条有效的途径,
西安光机所微纳光子学亚波长器件研究取得重要进展
微纳光子学主要研究在微纳尺度下光与物质相互作用的规律及其光的产生、传输、调控、探测和传感等方面的应用。微纳光子学亚波长器件能有效提高光子集成度,有望像电子芯片一样把光子器件集成到尺寸很小的单一光芯片上。纳米表面等离子体学是一新兴微纳光子学领域,主要研究金属纳米结构中光与物质的相互作用。它具有尺寸
双光子微纳3D打印典型应用
全新推出的QuantumX是世界上基于双光子灰度光刻(2GL®)用于折射和衍射微光学的工业级打印系统。该技术将灰度光刻的优良性能与双光子聚合的准确性和灵活性完美结合在一起,使得同时具备高速打印,最大设计自由度和高精度的特点。 典型应用 1、超材料和先进材料 微纳3D打印为超材料、复合材料、功
双光子微纳3D打印基本内容原理
双光子3D打印,其实专业名称应该是双光子激光直写技术。为了理解这项技术,首先要知道什么叫做“双光子吸收效应”。物质对光的吸收作用我们非常熟悉,以此为基础的造物技术也很常见,比如用紫外光照射一些光敏聚合物质,被光照射到的地方就会固化,成为固态的物体。如果您曾经利用光敏填充胶补过牙齿,就会有更直观的
纳米粒度仪的原理和性能特点
纳米粒度仪的原理先进的测试原理:本仪器采用动态光散射原理和光子相关光谱技术,根据颗粒在液体中布朗运动的速度测定颗粒大小。具有原理先进、精度极高的特点,从而保证了测试结果的真实性和有效性。高灵敏度与信噪比:本仪器的探测器采用专业级高性能光电倍增管(PMT),对光子信号具有极高的灵敏度和信噪比,从而保
《自然—光子学》报道可调焦光流控复合微透镜
2011年10月出版的《自然—光子学》以新闻方式报道了北京大学生物动态光学成像中心黄岩谊研究组的最新成果——基于光流控技术的高精度可调焦复合微透镜。 在器件越来越微型化的今天,为了降低成本,减少人力投入,削减废料产生,提高通量和自动化程度,提高实验精准度和可重复性,现代科学研究常常需
《自然—光子学》:单光子波长转换首次实现
美国国家标准和技术研究院(NIST)10月15日表示,科学家首次将量子源(半导体量子点)产出的波长为1300纳米的近红外单光子转换成波长为710纳米的近可见光光子。这种单光子波长(或颜色)转换的实现有望帮助开发出拥有量子通信、量子计算和量子计量的混合型量子系统。研究论文发表在《自然—光
微系统所研制出微纳光纤耦合超导纳米线单光子探测器
超导纳米线单光子探测器(SNSPD:Superconducting nanowire single-photon detector)作为一种高性能的单光子探测器,已广泛应用于量子信息、激光雷达、深空通信等领域,有力推动了相关领域的科技发展。 SNSPD器件主要有两种光耦合方式,一种是垂直光耦合
单光子波长转换首次实现
美国国家标准和技术研究院(NIST)10月15日表示,科学家首次将量子源(半导体量子点)产出的波长为1300纳米的近红外单光子转换成波长为710纳米的近可见光光子。这种单光子波长(或颜色)转换的实现有望帮助开发出拥有量子通信、量子计算和量子计量的混合型量子系统。 量子信息处
纳米激光粒度仪的五大性能特点!不妨进来瞧瞧!
纳米激光粒度仪采用动态光散射原理和光子相关光谱技术,根据颗粒在液体中的布朗运动的速度测定颗粒大小。小颗粒布朗运动速度快,大颗粒布朗运动速度慢,激光照射这些颗粒,不同大小的颗粒将使散射光发生快慢不同的涨落起伏。光子相关光谱法就根据特定方向的光子涨落起伏分析其颗粒大小。因此本仪器具有原理先进、精度极高
浅析纳米激光粒度仪的*优势
纳米激光粒度仪采用动态光散射原理和光子相关光谱技术,根据颗粒在液体中的布朗运动的速度测定颗粒大小。小颗粒布朗运动速度快,大颗粒布朗运动速度慢,激光照射这些颗粒,不同大小的颗粒将使散射光发生快慢不同的涨落起伏。光子相关光谱法就根据特定方向的光子涨落起伏分析其颗粒大小。因此本仪器具有原理先进、精度极高的
纳米激光粒度仪的优势介绍
纳米激光粒度仪采用动态光散射原理和光子相关光谱技术,根据颗粒在液体中的布朗运动的速度测定颗粒大小。小颗粒布朗运动速度快,大颗粒布朗运动速度慢,激光照射这些颗粒,不同大小的颗粒将使散射光发生快慢不同的涨落起伏。光子相关光谱法就根据特定方向的光子涨落起伏分析其颗粒大小。因此本仪器具有原理先进、精度极高
大量程纳米激光粒度仪的优势
采用动态光散射原理和光子相关光谱技术,根据颗粒在液体中的布朗运动的速度测定颗粒大小。小颗粒布朗运动速度快,大颗粒布朗运动速度慢,激光照射这些颗粒,不同大小的颗粒将使散射光发生快慢不同的涨落起伏。光子相关光谱法就根据特定方向的光子涨落起伏分析其颗粒大小。因此本仪器具有原理先进、精度极高的特点,
双光子微纳3D打印机的工作原理和应用领域
今天,纳糯三维科技的小编主要为大家介绍下双光子微纳3D打印机的工作原理和应用领域,希望帮助你更快的了解双光子微纳3D打印机。 双光子微纳3D打印机原理: 双光子微纳3D打印机是一种累积制造技术,它不仅可以形成技术也能形成数字模型,运用蜡材、粉末金属或者塑料之类的可粘合材料来一层一层粘
全面分析大量程纳米激光粒度仪
大量程纳米激光粒度仪仪器原理 采用动态光散射原理和光子相关光谱技术,根据颗粒在液体中的布朗运动的速度测定颗粒大小。小颗粒布朗运动速度快,大颗粒布朗运动速度慢,激光照射这些颗粒,不同大小的颗粒将使散射光发生快慢不同的涨落起伏。光子相关光谱法就根据特定方向的光子涨落起伏分析其颗粒大小。因此本仪器具有
化学所利用半导体纳米线同质结实现光学分波器
光学分波器是纳米光子回路中的关键元件,可以用来连接纳米激光器(J. Am. Chem. Soc., 2011, 133, 7276-7279)、光信号传感器(Adv. Mater., 2012, 24, OP194-199)、检测器 (Adv. Mater., 2012, 24, 474
光的波长是多少
光的波长是:红:770~622nm;橙:622~597nm;黄:597~577nm;绿:577~492nm;蓝、靛:492~455nm;紫:455~350nm。利用光波作为载频和光纤作为传输媒质的一种通信方式。它工作在近红外区,即波长是0.8μm(微米)---1.8μm,对应的频率为167THz--
光的波长是多少
光的波长是:红:770~622nm;橙:622~597nm;黄:597~577nm;绿:577~492nm;蓝、靛:492~455nm;紫:455~350nm。利用光波作为载频和光纤作为传输媒质的一种通信方式。它工作在近红外区,即波长是0.8μm(微米)---1.8μm,对应的频率为167THz--
X光的波长分类
软X射线:X射线波长略大于0.5 nm的被称作软X射线。 硬X射线:波长短于0.1纳米的叫做硬X射线。 硬X射线与波长长的(低能量)伽马射线范围重叠,二者的区别在于辐射源,而不是波长:X射线光子产生于高能电子加速,伽马射线则来源于原子核衰变。
什么是光的波长
光的波长是指光在空间中一个完整波形所占据的距离。光的波长可以从红外到紫外等范围内变化。在空气中,可见光的波长范围大约从400纳米(紫色)到700纳米(红色)。具体的波长范围如下:- 紫色:400 - 450纳米- 蓝色:450 - 495纳米- 绿色:495 - 570纳米- 黄色:570 - 59
智能激光粒度仪如此强大的功能,你却不知!
智能激光粒度仪是通过颗粒的衍射或散射光的空间分布(散射谱)来分析颗粒大小的仪器,采用Furanhofer衍射及Mie散射理论,测试过程不受温度变化、介质黏度,试样密度及表面状态等诸多因素的影响,只要将待测样品均匀地展现于激光束中,即可获得准确的测试结果。 智能激光粒度仪强大的功能: (1
智能激光粒度仪如此强大的功能,你却不知!
智能激光粒度仪是通过颗粒的衍射或散射光的空间分布(散射谱)来分析颗粒大小的仪器,采用Furanhofer衍射及Mie散射理论,测试过程不受温度变化、介质黏度,试样密度及表面状态等诸多因素的影响,只要将待测样品均匀地展现于激光束中,即可获得准确的测试结果。 智能激光粒度仪强大的功能: (1)
纳米粒度仪的五大性能特点
纳米粒度仪是用物理的方法测试固体颗粒的大小和分布的一种仪器,采用数字相关器的纳米激光粒度仪,其采用高速数字相关器和高性能光电倍增管作为核心器件,具有操作简便、测试快捷、高分辨、高重复及测试准确等特点,是纳米颗粒粒度测试的选产品。 纳米粒度仪的性能特点: 1、先进的测试原理:本仪器采用动态光
讲述纳米粒度仪的五大性能特点
纳米粒度仪是用物理的方法测试固体颗粒的大小和分布的一种仪器,采用数字相关器的纳米激光粒度仪,其采用高速数字相关器和高性能光电倍增管作为核心器件,具有操作简便、测试快捷、高分辨、高重复及测试准确等特点,是纳米颗粒粒度测试的选产品。 纳米粒度仪的性能特点: 1、先进的测试原理:本仪器采用动态光散射
高性能计算机超结点的关键微纳光电子器件研究取得突破
高性能计算机的运算速度主要取决于超结点中的CPU及CPU之间的数据传输和数据交换能力,但这种数据传输和数据交换速度慢、延迟大等问题阻碍了高性能计算机计算速度的提高。因此,迫切需要实现光数据交换代替电数据交换,大幅度的提高光数据交换的带宽、延迟、功耗、密度等性能。 在国家重大科学研究计划的支
物理所在微纳结构光学特性调控研究中取得系列进展
微纳光学结构依靠局域共振、电磁场增强、慢光效应等机制,可有效地调控光与物质(原子、分子、量子点、非线性材料等)的相互作用特性,其理念已广泛应用于光子集成、灵敏信号探测和识别、生化传感、超分辨显微成像、高效太阳能电池及发光器件、疾病诊断及治疗、环境监测等重要领域。相关研究的一个关键点是针对特定应用
纳米粒度仪的工作原理和优势介绍
对颗粒粒度、粒度分布的测量,特别是随着颗粒粒径的减小,特殊的电、磁、光、声等方面的特性使得对于纳米颗粒的测量具有特别重要的意义。纳米粒度仪广泛采用光子相关光谱法,也称动态光散射技术,其测量原理是建立在颗粒的随机热运动或布朗运动基础上。纳米粒度仪是一种常用的粒度仪产品,采用高速数字相关器和高性能光电倍
王丽华带领团队在光控DNA微纳制造方面取得进展
中国科学院上海高等研究院研究员王丽华带领团队在光控DNA微纳制造方面取得进展,相关研究成果以Remote Photothermal Control of DNA Origami Assembly in Cellular Environments为题,发表在Nano Letters上。 DNA折
中国科大提出一种无标记暗场成像新技术
中国科学技术大学教授张斗国课题组结合微纳光学的光场调控技术和计算光学显微成像技术,提出了一种基于光子晶体随机散斑照明的超越衍射极限、无标记暗场成像新技术。该技术的提出将拓展暗场显微镜的潜在应用领域,并提供传统暗场显微技术所不能看到的样品细节信息。2月20日,相关研究成果以直投的方式发表于美国《国家科
研究证实-亚马孙森林恢复特别慢
一项新研究表明,亚马孙森林遭到砍伐后,其再生速度可能比之前认为的要慢得多。这些发现可能对气候变化预测产生重大影响,因为森林在砍伐后重新生长——通常称为次生林——被认为是对抗人类引起的气候变化的一个重要工具,但次生林吸收大气碳的能力可能被高估了。图片来源于网络 这项研究对20多年来的森林再生进行