晶体电光调制综合实验装置
晶体电光调制综合实验装置主要用于高等院校激光专业教学实验。在基础物理实验和相关专业的实验中用以研究电场和光场相互作用的物理过程,也适用于光通讯与光信息处理的实验研究。 仪器特点 采用高性能的铌酸锂晶体作为光电调制晶体。 内置可调锯齿波、正弦调制信号源,可调直流偏压,外音频输入接口。 偏置电压数字显示,直观。 调制光接收灵敏度高,输出波形稳定;调制信号与解调输出可同时进行监视比较。 可输入音频信号,利用电光调制进行音频信号的激光传输和通信。 光具座导轨采用铝合金型材,滑座可进行精细调节、锁紧。 实验内容 1. 显示电光调制波形、观察电光调制现象 2. 测量电光晶体的特性参数 3. 测试电光晶体的调制特性曲线 4. 进行电光调制的光通讯实验研究与半波电压测量 ......阅读全文
晶体电光调制综合实验装置
晶体电光调制综合实验装置主要用于高等院校激光专业教学实验。在基础物理实验和相关专业的实验中用以研究电场和光场相互作用的物理过程,也适用于光通讯与光信息处理的实验研究。 仪器特点 采用高性能的铌酸锂晶体作为光电调制晶体。 内置可调锯齿波、正弦调制信号源,可调直流偏压,外音频输入接
利用晶体电光调制综合实验装置进行实验
晶体电光调制综合实验装置主要用于高等院校激光专业教学实验。在基础物理实验和相关专业的实验中用以研究电场和光场相互作用的物理过程,也适用于光通讯与光信息处理的实验研究。仪器特点采用高性能的铌酸锂晶体作为光电调制晶体。内置可调锯齿波、正弦调制信号源,可调直流偏压,外音频输入接口。偏置电压数字显示,直观。
电光调制实验仪
电光调制实验仪作为高等院校新一代的物理实验仪器,在基础物理实验和相关专业的实验中用以研究电场和光场相互作用的物理过程,也适用于光通讯与光信息处理的实验研究。电光调制器的调制信号频率可达 Hz量级,因而在激光通讯、激光显示等领域中有广泛的应用。 产品特点: 1.提供光功率可调的半导体
电光调制器的功能介绍
电光调制器是利用某些电光晶体,如铌酸锂晶体(LiNb03)、砷化镓晶体(GaAs)和钽酸锂晶体(LiTa03)的电光效应制成的调制器。电光效应即当把电压加到电光晶体上时,电光晶体的折射率将发生变化,结果引起通过该晶体的光波特性的变化,实现对光信号的相位、幅度、强度以及偏振状态的调制.
电光调制器的常用类型
M-Z干涉仪式调制器输入光波经过一段光路后在一个Y分支处被分成相等的两束,分别通过两光波导传输,光波导是由电光材料制成的,其折射率随外加电压的大小而变化,从而使两束光信号到达第2个Y分支处产生相位差。若两束光的光程差是波长的整数倍,两束光相干加强;若两束光的光程差是波长的1/2,两束光相干抵消,调制
电光调制器的工作原理
电光调制器的基础是电光效应。根据电光晶体的折射率变化量和外加电场强度的关系,电光效应可分为线性电光效应(泡克耳斯效应)和二次电光效应(克尔效应)。因为线性电光效应比二次电光效应的作用效果明显,因此实际中多用线性电光调制器对光波进行调制。线性电光调制器可分为纵向的和横向的。在纵向的调制器中,电场平行于
电光调制器的技术特点
电光调制器是利用某些电光晶体,如铌酸锂晶体(LiNb03)、砷化镓晶体(GaAs)和钽酸锂晶体(LiTa03)的电光效应制成的调制器。电光效应即当把电压加到电光晶体上时,电光晶体的折射率将发生变化,结果引起通过该晶体的光波特性的变化,实现对光信号的相位、幅度、强度以及偏振状态的调制.
电光调制器的应用特点
电光调制器有很多用途。相位调制器可用于相干光纤通信系统,在密集波分复用光纤系统中用于产生多光频的梳形发生器,也能用作激光束的电光移频器。电光调制器有良好的特性,可用于光纤有线电视(CATV)系统、无线通信系统中基站与中继站之间的光链路和其他的光纤模拟系统。电光调制器除了用于上述的系统中用于产生高重复
电光调制器的应用原理
电光调制器的应用原理 电光调制器的基础是电光效应。根据电光晶体的折射率变化量和外加电场强度的关系,电光效应可分为线性电光效应(泡克耳斯效应)和二次电光效应(克尔效应)。因为线性电光效应比二次电光效应的作用效果明显,因此实际中多用线性电光调制器对光波进行调制。线性电光调制器可分为纵向的和横向
电光调制器的主要应用
电光调制器有很多用途。相位调制器可用于相干光纤通信系统,在密集波分复用光纤系统中用于产生多光频的梳形发生器,也能用作激光束的电光移频器。电光调制器有良好的特性,可用于光纤有线电视(CATV)系统、无线通信系统中基站与中继站之间的光链路和其他的光纤模拟系统。电光调制器除了用于上述的系统中用于产生高重复
电光调制器的原理介绍
电光调制器是利用某些电光晶体,如铌酸锂晶体(LiNb03)、砷化稼晶体(GaAs)和钽酸锂晶体(LiTa03)的电光效应制成的调制器。电光效应即当把电压加到电光晶体上时,电光晶体的折射率将发生变化,结果引起通过该晶体的光波特性的变化,实现对光信号的相位、幅度、强度以及偏振状态的调制.
电光调制器的主要类型介绍
M-Z干涉仪式调制器输入光波经过一段光路后在一个Y分支处被分成相等的两束,分别通过两光波导传输,光波导是由电光材料制成的,其折射率随外加电压的大小而变化,从而使两束光信号到达第2个Y分支处产生相位差。若两束光的光程差是波长的整数倍,两束光相干加强;若两束光的光程差是波长的1/2,两束光相干抵消,调制
电光调制器普克尔盒(EOM)的高频调制原理
电光调制器普克尔盒(EOM)的高频调制原理——基于Conoptics pockels cell EOM 调制摘要:实现高频电光调制,考虑使用横向普克尔效应(EOM、普克尔斯盒、Pockels cells,Conoptics pockels cell EOM),美国Conoptics公司(上海昊量光电
迄今世界最小电光调制器问世
据最新一期《纳米快报》报道,美国研究人员设计并制造出了目前世界上最小的电光调制器,这或许意味着未来数据中心和超级计算机所使用的能源将得到大幅削减。 电光调制器在光纤网络中起着关键作用。就像晶体管作为电信号的开关一样,电光调制器可用作光信号的开关。光通信使用光,所以调制器用于打开和关闭在光纤中发
电光调制器的用途及应用特点
电光调制器的用途及应用特点 电光调制器是利用某些电光晶体,如铌酸锂晶体(LiNb03)、砷化稼晶体(GaAs)和钽酸锂晶体(LiTa03)的电光效应制成的调制器。电光效应即当把电压加到电光晶体上时,电光晶体的折射率将发生变化,结果引起通过该晶体的光波特性的变化,实现对光信号的相位、幅度、强
电光调制器的基本原理
电光调制器的基础是电光效应。根据电光晶体的折射率变化量和外加电场强度的关系,电光效应可分为线性电光效应(泡克耳斯效应)和二次电光效应(克尔效应)。因为线性电光效应比二次电光效应的作用效果明显,因此实际中多用线性电光调制器对光波进行调制。线性电光调制器可分为纵向的和横向的。在纵向的调制器中,电场平行于
西安交大等获得电光晶体的理想层状畴结构
a.PIN-PMN-PT单晶电光系数与其他晶体的对比,左上图为PIN-PMN-PT晶体照片;b.基于PIN-PMN- PT单晶研制的电光调Q开关,作为对比,图中给出了商用DKDP单晶和铌酸锂单晶电光开关照片和工作电压。论文作者供图电光晶体是电光调制器、电光开关、电控光束偏折器等重要电光器件中的核心
光调制器的分类
一般光纤通讯系统中的外调制器包括四类:①声光(AO)调制器;②磁光调制器,即Farady调制器;③电光(EO)调制器④电吸收(EA)调制器。现代光纤系统中主要使用两类调制器,一种是依赖于一定平面波导载光方式改变的电光调制器,另一种是内部结构类似于激光器的半导体二极管电吸收调制器,后者能在透过光和吸收
光调制器的基本分类介绍
一般光纤通讯系统中的外调制器包括四类:①声光(AO)调制器;②磁光调制器,即Farady调制器;③电光(EO)调制器④电吸收(EA)调制器。现代光纤系统中主要使用两类调制器,一种是依赖于一定平面波导载光方式改变的电光调制器,另一种是内部结构类似于激光器的半导体二极管电吸收调制器,后者能在透过光和吸收
声光调制实验仪
声光调制实验仪作为新一代的高等院校物理实验仪器 ,在基础物理实验和相关专业的实验中,用以研究声场和光场相互作用的物理过程;测量声光调制偏转的特性;也适用于研究材料的物理性能以及声光偏转和声光调制在光通讯、光信息处理等现代应用中的实验研究。 功能特点: 1.提供光功率可调的半导体激光器
声光调制实验仪
声光调制实验仪作为新一代的高等院校物理实验仪器 ,在基础物理实验和相关专业的实验中,用以研究声场和光场相互作用的物理过程;测量声光调制偏转的特性;也适用于研究材料的物理性能以及声光偏转和声光调制在光通讯、光信息处理等现代应用中的实验研究。 功能特点: 1.提供光功率可调的半导体激光器
综合极端条件实验装置通过国家验收
2025年2月26日,“十二五”国家重大科技基础设施综合极端条件实验装置通过国家验收。该装置顺利验收,标志着我国建成了国际先进的同时具备极低温、超高压、强磁场和超快光场等极端条件综合实验能力的用户装置。01 解锁物质科学的新钥匙物态调控是物理学研究造福人类社会的重要途径。当前,美国、欧洲、日本等发达
Q开关的类型
声光Q开关最常见的Q开关类型就是声光调制器。只要声波关闭,晶体或者玻璃片产生的透射损耗就非常小,但是声波打开后,会产生很强的布拉格反射,每次通过产生的损耗在50%左右,在线性激光谐振腔中通过两次会产生75%的损耗。为了产生声波,电子学驱动器需要功率在1W的射频功率(或者在大孔径器件中需要几个瓦特)和
Q开关的类型
声光Q开关最常见的Q开关类型就是声光调制器。只要声波关闭,晶体或者玻璃片产生的透射损耗就非常小,但是声波打开后,会产生很强的布拉格反射,每次通过产生的损耗在50%左右,在线性激光谐振腔中通过两次会产生75%的损耗。为了产生声波,电子学驱动器需要功率在1W的射频功率(或者在大孔径器件中需要几个瓦特)和
晶体闪烁计数探测装置相关介绍
一个供探测γ光子用的固体晶体装置包括一个“密闭的”铊激活碘化钠晶体,安放在光电倍增管的表面上。“密闭的”晶体上是一块固态圆筒状的铊激活碘化钠,其顶部和四周都是用铝层包裹以避免光和湿气,因为碘化钠晶体易吸潮,为改善反射性,碘化钠晶体用一玻璃片密封,并同光电倍增管的表面直接接触,其间加些硅油以达到光
研究揭示铁电光伏驱动的偏振光电探测晶体材料
偏振光电探测在遥感、近场成像、光学开关、通信和高分辨探测等领域有着广阔的应用前景。然而受材料/器件结构各向异性的限制,在传统半导体材料中实现高偏振特性的光探测仍然是一个巨大的挑战。铁电光伏材料所固有的高偏振特性(体光伏效应)为实现高效偏振光电探测提供了一种新的解决方案。特别是近年兴起的有机无机杂
我国学者构建晶体电光系数的多晶粉末光谱测试方法
电光晶体是一种重要的功能晶体,以此制成的高速电光开关、电光调制器和电光偏转器在激光技术、光谱技术等领域中有重要应用。尽管部分实用的电光晶体已实现商业化,但当前仍需发掘更多性能优良的电光晶体以满足日益增长的电光晶体应用需求。目前,新型电光晶体的研究基本处于停滞状态,其中的一个原因是没有合适的理论方
MZ干涉仪式调制器原理介绍
电光调制器(EOM)是利用某些电光晶体,如铌酸锂(LiNbO3)、砷化镓(GaAs)和钽酸锂(LiTaO3)的电光效应而制成的。电光调制是基于线性电光效应(普尔克效应)即光波导的折射率正比于外加电场变化的效应。电光效应导致的相位调制器中光波导折射率的线性变化,使通过该波导的光波有了相位移动,从而实现
继电器综合实验装置的性能参数介绍
继电器综合尝试装置为保护继电器通用测量仪器,实用于电流、电压、时间、两头等继电器与跳、合闸试验,存在结实耐用、容积小、分量轻、性能全,便于照顾等特征。 继电器综合实验装置技能参数: 1、源电压:~220V±10% 50HZ 2、额外输入定量:1KVA 3、可调交流
串联谐振试验装置的脉冲频率调制(PFM)方法
脉冲频率调制方法是通过改变逆变器的工作频率, 从而改变负载输出阻抗以达到调节输出功率的目的。从串联谐振负载的阻抗特性可知,串联谐振负载的阻抗随着逆变器的工作频率(f)的变化而变化。 对于一个恒定的输出电压 当工作频率负载谐振频率偏差越大时输出阻抗就越高,因此输出功率就越小,反之亦然。由于脉冲频率调制