J型高速逆流色谱仪的演进和发展(一)
一、综述J型高速逆流色谱仪采用多层缠绕分离柱通过行星式公转+自转产生的离心力以及不同物质在上下两相溶剂中的溶解度差等因素实现物质的分离。高速逆流色谱技术相比传统的分离纯化手段的优点在于较高的分离效率和较大的制备量以及溶剂使用成本的降低。J型高速逆流色谱仪内部核心部件组成包括至少一个分离柱,一个公转轴和一个自转轴。运转方式为分离柱在围绕自转轴高速自转的同时,整体再围绕公转轴高速公转。为了实现较大的制备量和较高的分离效率,业界对构成高速逆流色谱仪设备的核心部件以及设备内部的机械结构,温控方式等不断的进行探索。从国内第一台高速逆流色谱仪诞生至今,国内的高速逆流色谱仪技术发展经历了三个主要阶段。1. 采用单分离柱、解绕管的高速逆流色谱仪2. 采用三分离柱、解绕管、循环水浴实现的高速逆流色谱仪3. 采用旋转密封解绕、多分离柱、压缩机空调直冷实现的高速逆流色谱仪在上述三个发展阶段中,分离柱设计,解绕方式设......阅读全文
J型高速逆流色谱仪的演进和发展(一)
一、综述J型高速逆流色谱仪采用多层缠绕分离柱通过行星式公转+自转产生的离心力以及不同物质在上下两相溶剂中的溶解度差等因素实现物质的分离。高速逆流色谱技术相比传统的分离纯化手段的优点在于较高的分离效率和较大的制备量以及溶剂使用成本的降低。J型高速逆流色谱仪内部核心部件组成包括至少一个分离柱,一个公转轴
J型高速逆流色谱仪的演进和发展(二)
2.2.1 解绕轴传统解绕方法是采用PTFE软管加解绕轴进行连接的,基本原理如下所示:如图,箭头指示为分离柱旋转方向,其搭配一个转速相同但与其反向旋转的解绕轴来完成红色管路的解绕。在运行过程中,由于转速相同但转向相反,所以红色管路不会因为转动而缠绕折损,最后解绕轴与中心轴组成最后一个解绕管路,将管路
J型高速逆流色谱仪的演进和发展(三)
2.4.2 压缩机空调直冷压缩机空调直冷的方法是将主机部分更改为开放式结构,完全与机器内部连通;并在机器外壳挂装工业级控温空调系统,直接对机器内部空间进行控制,从而最终实现主机温度恒定。主机温度的控制最后都需要空气作为介质作用于分离柱,压缩机空调直冷无论从温度改变速度上和能力上都要强于温控水浴(水浴
J型高速逆流色谱仪演进及未来(一)
目录一、综述... 3二、关键技术... 32.1 分离柱... 32.1.1 单分离柱... 32.1.2 双分离柱... 42.1.3 三分离柱... 42.2 管路解绕... 52.2.1 解绕轴... 52.2.2 旋转密封... 52.3 减震系统... 62.3.1 传统减震... 62
J型高速逆流色谱仪演进及未来(四)
三、演进过程随着分离柱,解绕方式,减震系统,温控系统相关技术的发展,高速逆流色谱仪的发展也经历了从单分离柱+解绕管,三分离柱+解绕管,多分离柱+旋转密封模式的演变。3.1单分离柱+解绕管最初引进逆流色谱技术时,国内的高速逆流色谱仪生产厂家采用了单分离柱加解绕管的结构设计逆流色谱仪,这种设备的共同特点
J型高速逆流色谱仪演进及未来(三)
2.2.2.1 系统死体积 高速逆流色谱仪设备,除去有效柱容积部分,都可以称之为死体积,这些管路不参与分离过程,只作为必要连接管路存在,所以死体积越少越好。通常最常见的方法可将机器外部连接管路在压力允许的情况下通过选用更细更短的管路的简单方法来尽量减少死体积的存在,而机器内部的死
J型高速逆流色谱仪演进及未来(二)
2.1.2 双分离柱将单分离柱配重块换成分离柱组成双分离柱系统,这样就解决了平衡问题,也扩展了机器容量,但是需要更多的管路来进行连接,这种机型理论最大β值为1,在实际应用中,因为分离柱加工缠绕以及机械结构稳定性等设计考虑,β值不可能实际到达1。其结构示意图如下所示:2.1.3 三分离柱三分离柱同双分
高速逆流色谱仪技术的发展历程
高速逆流色谱法是建立在单向性流体动力平衡体系之上的一种逆流色谱分离方法,它是在研究旋转管的流体动力平衡时偶然发现的。当螺旋管在慢速转动时,螺旋管中的两相都从一端分布到另一端。用某一相作移动相从一端向另一端洗脱时,另一相在螺旋管里的保留值大约50%,但这一保留量会随着移动相流速的增大而减小,使分离效率
高速逆流色谱仪技术的发展历程
高速逆流色谱法是建立在单向性流体动力平衡体系之上的一种逆流色谱分离方法,它是在研究旋转管的流体动力平衡时偶然发现的。当螺旋管在慢速转动时,螺旋管中的两相都从一端分布到另一端。用某一相作移动相从一端向另一端洗脱时,另一相在螺旋管里的保留值大约50%,但这一保留量会随着移动相流速的增大而减小,使分离效率
高速逆流色谱仪技术的发展历程
高速逆流色谱仪技术的发展历程高速逆流色谱法是建立在单向性流体动力平衡体系之上的一种逆流色谱分离方法,它是在研究旋转管的流体动力平衡时偶然发现的。当螺旋管在慢速转动时,螺旋管中的两相都从一端分布到另一端。用某一相作移动相从一端向另一端洗脱时,另一相在螺旋管里的保留值大约50%,但这一保留量会随着移动相
高速逆流色谱仪技术发展历程
高速逆流色谱法是建立在单向性流体动力平衡体系之上的一种逆流色谱分离方法,它是在研究旋转管的流体动力平衡时偶然发现的。当螺旋管在慢速转动时,螺旋管中的两相都从一端分布到另一端。用某一相作移动相从一端向另一端洗脱时,另一相在螺旋管里的保留值大约50%,但这一保留量会随着移动相流速的增大而减小,使分离效率
高速逆流色谱仪的技术发展简介
技术发展 1.[2]20世纪70年代,出现了液滴逆流色谱(DCCC)特点: (1)流体静力学原理(Hydrostatic equilibrium system,HSES) (2)分离时间过长、连接处容易出现渗漏等 2.20世纪70年代出现了离心分配色谱仪(Centrifugal part
高速逆流色谱研究发展
高速逆流色谱研究发展:溶剂体系的选择范围越来越宽泛,有人提出用超临界二氧化碳做流动相,利用它的高扩散性、低粘度、流体特性及环境友好等其他溶剂不可比拟的优势分离化合物,还有人提出用制冷剂做流动相的可能性。还有人提出将三相溶剂体系用于高速逆流色谱分离中,可以对宽极性范围的样品进行很好的分离。三相溶剂还只
简介高速逆流色谱仪的发展趋势简介
为了克服HSCCC理论研究相对滞后的不足,有不少研究人员正从事理论研究,试图建立完善的理论基础来指导溶剂体系的选择,以期使HSCCC尽快从一种分离技术发展成为一门分离科学。HSCCC一种独特的不用固态载体的液液分配色谱技术,是一种能实现连续有效分离的实用分离制备技术,能采用多种多样的溶剂系统对任
高速逆流色谱的发展历程
高速逆流色谱是在1982年,美国国立卫生院的一个教授首先研究和发展起来的一种不同于传统液相色谱法的现代色谱分离制备技术。作为一种新的色谱技术,HSCCC分离系统可以理解为以螺旋管式离心分离仪代替HPLC的柱色谱系统。HSCCC不使用固相载体作固定相, 克服了固相载体带来的样品吸附、损失、污染和峰
高速逆流色谱的发展历史
1.20世纪70年代,出现了液滴逆流色谱(DCCC) 特点: (1)流体静力学原理(Hydrostatic equilibrium system,HSES) (2)分离时间过长、连接处容易出现渗漏等 2.20世纪70年代出现了离心分配色谱仪(Centrifugal partition c
高速逆流色谱的研究发展
溶剂体系的选择范围越来越宽泛,有人提出用超临界二氧化碳做流动相,利用它的高扩散性、低粘度、流体特性及环境友好等其他溶剂不可比拟的优势分离化合物,还有人提出用制冷剂做流动相的可能性。还有人提出将三相溶剂体系用于高速逆流色谱分离中,可以对宽极性范围的样品进行很好的分离。三相溶剂还只用于标准品混合物的
高速逆流色谱仪概述
高速逆流色谱法(High-speed Countercurrent Chromatography,简称HSCCC),于1982年由美国国立卫生院Ito博士研制开发的一种新型的、连续高效的液液分配色谱技术,与其它色谱技术不同的是它不需任何固态载体,因此能避免固相载体表面与样品发生反应而导致样品的污
高速逆流色谱仪介绍
逆流色谱技术是一种应用在化学分离分析领域中的技术,其原理是用充满两相溶剂的螺旋管作为分离单元在离心力场中按一定规律运动,当被分离的混合物通过分离单元时,由于不同物质在两相溶剂中具有不同的分配特性将会产生物质的分离排列。 一般逆流色谱仪中,分离单元不仅围绕公转中心做公转运动,同时也做自转运动,呈行
高速逆流色谱仪的介绍
逆流色谱技术是一种应用在化学分离分析领域中的技术,其原理是用充满两相溶剂的螺旋管作为分离单元在离心力场中按一定规律运动,当被分离的混合物通过分离单元时,由于不同物质在两相溶剂中具有不同的分配特性将会产生物质的分离排列。一般逆流色谱仪中,分离单元不仅围绕公转中心做公转运动,同时也做自转运动,呈行星式运
高速逆流色谱仪的优势
高速逆流色谱(high-speed countercurrent chromatography,简称HSCCC) 是一种较新型的液—液分配色谱,由美国国立健康研究院(National Institute of Health, U.S.A.)Ito博士最先研制开发后由北京市新技术应用研究所在国
高速逆流色谱仪的优势
高速逆流色谱(high-speed countercurrent chromatography,简称HSCCC) 是一种较新型的液—液分配色谱,由美国国立健康研究院(National Institute of Health, U.S.A.)Ito博土zui先研制开发后由北京市新技术应用研究所在国内开
高速逆流色谱技术发展
高速逆流色谱技术发展:二十世纪六十年代,首先在日本,随后在美国国家医学研究院发现了一种有趣的现象:即互不相溶的两相溶剂在绕成螺旋形的小孔径管子里分段割据,并能实现两溶剂相之间的逆向对流。Ito及其后来者在此基础上研究并设计制造出了一系列逆流色谱装置,早期的是封闭型的螺旋管行星式离心分离仪CPC(co
高速逆流色谱的技术发展
二十世纪六十年代,首先在日本,随后在美国国家医学研究院发现了一种有趣的现象:即互不相溶的两相溶剂在绕成螺旋形的小孔径管子里分段割据,并能实现两溶剂相之间的逆向对流。Ito及其后来者在此基础上研究并设计制造出了一系列逆流色谱装置,早期的是封闭型的螺旋管行星式离心分离仪CPC(coil planet
高速逆流色谱的应用与发展
从重液滴通过另一液体滴落,溶质在两相中间实现分配的原理出发,进行设备与过程的研发转变,20世纪60年代发明了连续液/液的高速逆流色谱(High-speed Countercurrent Chromatography,HSCCC)技术,目前已广泛应用于生物、医药、天然产物、环境分析、食品等领域的分离、
高速逆流色谱的发展史
高速逆流色谱的发展史1.20世纪70年代,出现了液滴逆流色谱(DCCC)特点:(1)流体静力学原理(Hydrostatic equilibrium system,HSES)(2)分离时间过长、连接处容易出现渗漏等2.20世纪70年代出现了离心分配色谱仪(Centrifugal partition c
高速逆流色谱的发展趋势
为了克服HSCCC理论研究相对滞后的不足,有不少研究人员正从事理论研究,试图建立完善的理论基础来指导溶剂体系的选择,以期使HSCCC尽快从一种分离技术发展成为一门分离科学。HSCCC一种独特的不用固态载体的液液分配色谱技术,是一种能实现连续有效分离的实用分离制备技术,能采用多种多样的溶剂系统对任
高速逆流色谱的应用与发展
从重液滴通过另一液体滴落,溶质在两相中间实现分配的原理出发,进行设备与过程的研发转变,20世纪60年代发明了连续液/液的高速逆流色谱(High-speed Countercurrent Chromatography,HSCCC)技术,目前已广泛应用于生物、医药、天然产物、环境分析、食品等领域的分离、
如何选型高速逆流色谱仪
高速逆流色谱仪是一种新的液相色谱技术,利用液液两相的逆流分配,在没有固体填料、不需使用固态固定相的情况下,而是利用离心力产生的恒定力将固定相保留在由管道连接的一系列的腔体中,实现复杂化学物质的混合物分离。它以液体溶剂为固定相,螺旋柱在行星运动时产生的离心力,使互不相溶的两相不断互相混合,同时保留其中
如何选型高速逆流色谱仪?
高速逆流色谱仪是一种新的液相色谱技术,利用液液两相的逆流分配,在没有固体填料、不需使用固态固定相的情况下,而是利用离心力产生的恒定力将固定相保留在由管道连接的一系列的腔体中,实现复杂化学物质的混合物分离。它以液体溶剂为固定相,螺旋柱在行星运动时产生的离心力,使互不相溶的两相不断互相混合,同时保留其中