Antpedia LOGO WIKI资讯

阿司匹林研究热点

近日,来自堪萨斯城退伍军人医疗中心的研究人员在【Laboratory Investigation】上发表了最新研究成果。结果显示,每日服用一定剂量的阿司匹林或可有效阻断乳腺癌的生长。此前研究曾发现阿司匹林或对结肠癌、胃肠癌、前列腺癌等有一定的抑制作用。 为了检测阿司匹林是否可以改变乳腺癌细胞的特性而使其不再扩散,研究人员利用细胞和小鼠模型进行研究。研究人员将乳腺癌细胞置于96孔板中进行孵育培养,给其中一半的培养液中加入阿司匹林,随后研究者发现阿司匹林可以明显增加所检测细胞的死亡率,而没有死亡的细胞中也有很多细胞生长发生了延迟。 随后,研究人员对20只患有恶性乳腺癌的小鼠进行研究,在15天内,研究人员每日给予其中一半的小鼠和人类相同剂量的阿司匹林,即75mg(被认为是最低剂量),在研究结束时,对小鼠机体中的肿瘤进行称重,结果发现,接受阿司匹林治疗的小鼠肿瘤平均重量减少了47%。 为了证实阿司匹林可以抑制乳腺癌生长,研究人......阅读全文

阿司匹林研究热点

  近日,来自堪萨斯城退伍军人医疗中心的研究人员在【Laboratory Investigation】上发表了最新研究成果。结果显示,每日服用一定剂量的阿司匹林或可有效阻断乳腺癌的生长。此前研究曾发现阿司匹林或对结肠癌、胃肠癌、前列腺癌等有一定的抑制作用。  为了检测阿司匹林是否可以改变乳腺癌细胞的

遗传重组热点基因研究

        遗传重组(它涉及DNA股的断开和重接以产生新的基因组合)是真核细胞生物中的一种基本的生物学过程。在哺乳动物减数分裂的时候,在这一专门化的细胞分裂过程中,来自母系和父系的染色体被一分为二并产生出精子细胞和卵子细胞,而重组过程则将同源染色体的不同部分连接在了一起,从而导致了后代中的基

高速逆流色谱的研究热点

  近年来,溶剂体系的选择范围越来越宽泛,有人提出用超临界二氧化碳做流动相,利用它的高扩散性、低粘度、流体特性及环境友好等其他溶剂不可比拟的优势分离化合物,还有人提出用制冷剂做流动相的可能性。还有人提出将三相溶剂体系用于高速逆流色谱分离中,可以对宽极性范围的样品进行很好的分离。目前三相溶剂还只用于

RNA研究热点技术介绍总汇

  头条消息:2019年8月16日,2019年国家自然科学基金评审结果发布,今年国自然重点资助项目743项,总金额达22.184亿,北京大学、浙江大学位居前两位,分别获得37项和34项,总计超过1亿元,而上海交通大学(30项)、复旦大学、清华大学、南京大学、中山大学、天津大学、华中科技大学、同济大学

RNA研究热点技术介绍总汇

  头条消息:2019年8月16日,2019年国家自然科学基金评审结果发布,今年国自然重点资助项目743项,总金额达22.184亿,北京大学、浙江大学位居前两位,分别获得37项和34项,总计超过1亿元,而上海交通大学(30项)、复旦大学、清华大学、南京大学、中山大学、天津大学、华中科技大学、同济大学

研究发现阿司匹林抗线虫衰老分子机理

  阿司匹林作为一个非甾体类抗炎药已经使用超过一个世纪,其长期广泛被用于解热、镇痛、抗炎。由于其能抑制血小板聚集,近年又用于防治心绞痛、心肺梗塞、脑血栓。目前也有报道长期服用阿司匹林能够改善很多健康状况,但其分子机制尚未阐明。   中国科学院昆明植物研究所罗怀容研究组发现阿司匹林抗线虫衰老及其新作

近期阿司匹林研究进展一览

  阿司匹林曾经是一种用于解热镇痛的传统药物,能够帮助有效预防血栓等多种疾病的发生,如今科学家们发现阿司匹林或许还具有其它特性,比如抵御癌症、心脏病以及先兆子痫等,本文中,小编盘点了近期阿司匹林相关的研究进展;分享给各位!  【1】研究确定低剂量阿司匹林的又一大神奇功效  妊娠24周左右,在高血压、

近期阿司匹林研究进展一览

  阿司匹林曾经是一种用于解热镇痛的传统药物,能够帮助有效预防血栓等多种疾病的发生,如今科学家们发现阿司匹林或许还具有其它特性,比如抵御癌症、心脏病以及先兆子痫等,本文中,小编盘点了近期阿司匹林相关的研究进展;分享给各位!  【1】研究确定低剂量阿司匹林的又一大神奇功效  妊娠24周左右,在高血压、

2020年自然研究热点-外泌体研究

  一、外泌体研究热度持续攀升   外泌体(exosome)是活细胞分泌的30-200nm的囊泡,在电镜下具有非常明显单层膜结构,通常为茶托型或一侧凹陷的半球形。其主要来源于细胞内溶酶体微粒内陷形成的多囊泡体,经多囊泡体外膜与细胞膜融合后释放到胞外基质中。多种细胞在正常及病理状态下均可分泌外泌体,

2020年自然研究热点-外泌体研究

  一、外泌体研究热度持续攀升   外泌体(exosome)是活细胞分泌的30-200nm的囊泡,在电镜下具有非常明显单层膜结构,通常为茶托型或一侧凹陷的半球形。其主要来源于细胞内溶酶体微粒内陷形成的多囊泡体,经多囊泡体外膜与细胞膜融合后释放到胞外基质中。多种细胞在正常及病理状态下均可分泌外泌体,