关于拉曼探头

非浸入式拉曼探头 RPB,RPS拉曼探头是适于实验室用途的多功能采样附件。 这些探头具有532纳米、785纳米及其他激发波长,并配备用于激发和收集光纤的FC和SMA 905连接器。 RPB探头采用阳极化铝材料并带有一个不锈钢尖头,包含一个手动安全快门;RPS探头为不锈钢材料,含一个透射指示器。 RPB和RPS属于非浸入式探头,非常适于对固体物及表面的测量以及透过玻璃和塑料进行的测量。 拉曼探头特点及优势 应用广泛 --适用于不同应用的实验室拉曼光谱检测 高性能 --强大的信号收集和高OD激光谱线透过率 安全快门选项 --RPB系列探头包含手动安全快门 深度激光谱线覆盖 --瑞利线OD 6-8衰减,具体视零件号而定 文章链接:仪器设备网 https://www.instrumentsinfo.com/technology/show-2883.html ......阅读全文

关于拉曼探头

  非浸入式拉曼探头   RPB,RPS拉曼探头是适于实验室用途的多功能采样附件。 这些探头具有532纳米、785纳米及其他激发波长,并配备用于激发和收集光纤的FC和SMA 905连接器。 RPB探头采用阳极化铝材料并带有一个不锈钢尖头,包含一个手动安全快门;RPS探头为不锈钢材料,含一个透射指示

fProbe-易插拔的拉曼探头

fProbe 易插拔的拉曼探头        紧凑型设计 / 结构强壮 / OD6 激光抑制比              fProbe 拉曼探头 适配 K-Sens & Kun 拉曼光谱仪,满足所有 Labs 级拉曼检测。高达 106 激光抑制比,确保微弱拉曼信号的有效探测;提供端头“轻量化

拉曼光谱仪fProbe-荧光探头

fProbe 荧光探头        超过 OD4 的激光抑制 / 集成设计、操作方便                            荧光探头

关于拉曼光谱的拉曼效应介绍

  光照射到物质上发生弹性散射和非弹性散射. 弹性散射的散射光是与激发光波长相同的成分.非弹性散射的散射光有比激发光波长长的和短的成分, 统称为拉曼效应。  当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会按原来的方向透射,而一小部分则按不同的角度散射开来,产生散射光。在垂直

RP2和RPR系列浸入式拉曼探头

海洋光学提供RP2和RPR系列浸入式拉曼探头,非常适用于透明液体或者浑浊液体的原位测量。该系列探头提供532nm,785nm及其他定制激发波长产品,连接端也提供FC和SMA905选择。RP2系列实验室级探头浸入部分使用不锈钢浸入式套管,可以根据测试条件不同调节不同工作距离。RP2系列可以

紫外拉曼与共振拉曼原理

荧光干扰问题和灵敏度较低严重阻碍了常规拉曼光谱的广泛应用。但近年来发展起来的紫外拉曼光谱技术有效地解决了上述问题。紫外拉曼光谱技术的出现和发展大大地扩展了拉曼光谱的应用范围。右图是紫外拉曼光谱避开荧光干扰的原理图。荧光往往出现在300nm-700nm区域,或者更长波长区域。而在紫外区

紫外拉曼与共振拉曼原理

  荧光干扰问题和灵敏度较低严重阻碍了常规拉曼光谱的广泛应用。但近年来发展起来的紫外拉曼光谱技术有效地解决了上述问题。紫外拉曼光谱技术的出现和发展大大地扩展了拉曼光谱的应用范围。右图是紫外拉曼光谱避开荧光干扰的原理图。荧光往往出现在300nm-700nm区域,或者更长波长区域。而在紫外区的某个波

紫外拉曼与共振拉曼原理

荧光干扰问题和灵敏度较低严重阻碍了常规拉曼光谱的广泛应用。但近年来发展起来的紫外拉曼光谱技术有效地解决了上述问题。紫外拉曼光谱技术的出现和发展大大地扩展了拉曼光谱的应用范围。右图是紫外拉曼光谱避开荧光干扰的原理图。荧光往往出现在300nm-700nm区域,或者更长波长区域。而在紫外区的某个波  紫外

拉曼测试

 简要介绍:先进材料表征方法利用电子、光子、离子、原子、强电场、热能等与固体表面的相互作用,测量从表面散射或发射的电子、光子、离子、原子、分子的能谱、光谱、质谱、空间分布或衍射图像,得到表面成分、表面结构、表面电子态及表面物理化学过程等信息的各种技术,统称为先进材料表征方法。先进材料表征方法包括表面

拉曼分析

当一束激发光的光子与作为散射中心的分子发生相互作用时,大部分光子仅是改变了方向,发生散射,而光的频率仍与激发光源一致,这中散射称为瑞利散射。但也存在很微量的光子不仅改变了光的传播方向,而且也改变了光波的频率,这种散射称为拉曼散射。其散射光的强度约占总散射光强度的10-6~10-10。拉曼散射的产生原

拉曼散射

1921 年,印度物理学家拉曼(C. V. Raman)从英国搭船回国,在途中他思考着为什么海洋会是蓝色的问题,而开始了这方面的研究,促成他于 1928 年 2 月发现了新的散射效应,就是现在所知的拉曼效应,在物理和化学方面都很重要。 1888 年 11 月,拉曼(他的全名是 Chandrasek

拉曼光谱

1、单道检测的拉曼光谱分析技术。2、以CCD为代表的多通道探测器的拉曼光谱分析技术。3、采用傅立叶变换技术的FT-Raman光谱分析技术。4、共振拉曼光谱分析技术。5、表面增强拉曼效应分析技术。

拉曼光谱

一、拉曼光谱的基本原理用单色光照射透明样品时,光的绝大部分沿着入射光的方向透过,一部分被吸收,还有一部分被散射。用光谱仪测定散射光的光谱,发现有两种不同的散射现象,一种叫瑞利散射,另一种叫拉曼散射。1.瑞利散射散射是光子与物质分子相互碰撞的结果。如果光子与样品分子发生弹性碰撞,即光子与分子之间没有能

拉曼光谱

一、拉曼光谱的基本原理用单色光照射透明样品时,光的绝大部分沿着入射光的方向透过,一部分被吸收,还有一部分被散射。用光谱仪测定散射光的光谱,发现有两种不同的散射现象,一种叫瑞利散射,另一种叫拉曼散射。1.瑞利散射散射是光子与物质分子相互碰撞的结果。如果光子与样品分子发生弹性碰撞,即光子与分子之间没有能

关于拉曼光谱的信号选择介绍

  入射激光的功率,样品池厚度和光学系统的参数也对拉曼信号强度有很大的影响,故多选用能产生较强拉曼信号并且其拉曼峰不与待测拉曼峰重叠的基质或外加物质的分子作内标加以校正。其内标的选择原则和定量分析方法与其他光谱分析方法基本相同。  斯托克斯线能量减少,波长变长  反斯托克斯线能量增加,波长变短

关于拉曼光谱你应该知道的

一、请教哪些样品容易测得拉曼信号?1. 拉曼光谱的信号非常微弱,大致是瑞利散射的10e-61 ~1 0e-8的级别,普通的设计取得拉曼信号非常困难,所以需要加上较好的陷波滤波片尽量的消减瑞利散射。这样,拉曼信号依然和背景大致相当,甚至更低,还需要考虑光谱仪本身的杂散光阻挡能力,使用何种探测器,样本是

关于拉曼光谱的含义基本介绍

  光照射到物质上发生弹性散射和非弹性散射. 弹性散射的散射光是与激发光波长相同的成分,非弹性散射的散射光有比激发光波长长的和短的成分, 统称为拉曼效应。拉曼效应是光子与光学支声子相互作用的结果。  拉曼光谱-原理  拉曼效应起源于分子振动(和点阵振动)与转动,因此从拉曼光谱中可以得到分子振动能级(

关于显微拉曼光谱技术的介绍

  显微拉曼光谱技术是将拉曼光谱分析技术与显微分析技术结合起来的一种应用技术。与其他传统技术相比,更易于直接获得大量有价值信息,共聚焦显微拉曼光谱不仅具有常规拉曼光谱的特点,还有自己的独特优势。辅以高倍光学显微镜,具有微观、原位、多相态、稳定性好、空间分辨率高等特点,可实现逐点扫描,获得高分辨率的三

关于拉曼光谱的历史发现介绍

  1928年C.V.拉曼实验发现,当光穿过透明介质被分子散射的光发生频率变化,这一现象称为拉曼散射,同年稍后在苏联和法国也被观察到。在透明介质的散射光谱中,频率与入射光频率υ0相同的成分称为瑞利散射;频率对称分布在υ0两侧的谱线或谱带υ0±υ1即为拉曼光谱,其中频率较小的成分υ0-υ1又称为斯托克

关于表面增强拉曼光谱的简介

  拉曼光谱和红外光谱一样同属于分子振动光谱,可以反映分子的特征结构。但是拉曼散射效应是个非常弱的过程,一般其光强仅约为入射光强的 10^-10。所以拉曼信号都很弱,要对表面吸附物种进行拉曼光谱研究几乎都要利用某种增强效应。  Fleischmann 等人于 1974 年对光滑银电极表面进行粗糙化处

拉曼物理学原理和拉曼贡献

物理学原理拉曼效应的机制和荧光现象不同,并不吸收激发光,因此不能用实际的上能级来解释,恩拉曼光谱和黄昆用虚的上能级概念说明拉曼效应。假设散射物分子原来处于电子基态,振动能级如上图所示。当受到入射光照射时,激发光与此分子的作用引起极化可以看作虚的吸收,表述为电子跃迁到虚态(Virtual state)

拉曼课堂小知识(一)拉曼光谱的原理

1.拉曼光谱的原理是什么?光照射到物质上发生弹性散射和非弹性散射. 弹性散射的散射光是与激发光波长相同的成分.非弹性散射的散射光有比激发光波长长的和短的成分, 统称为拉曼效应。当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会按原来的方向透射,而一小部分则按不同的角度散射开来

拉曼问题汇总:拉曼光谱百问解答总结!

拉曼光谱(Raman Spectra),是一种散射光谱。拉曼光谱分析法是基于印度科学家C.V.拉曼(Raman)所发现的拉曼散射效应,对与入射光频率不同的散射光谱进行分析以得到分子振动、转动方面信息,并应用于分子结构研究的一种分析方法。今天分享一些问答集锦,希望对你有帮助。一、测试了一些样品,得到的

关于表面增强拉曼光谱的展望介绍

  继发现 SERS 之后 ,又发现其它的表面增强光学效应(如表面增强红外、表面增强二次谐波和表面增强合频) 。所以表面增强光学效应实际上是一个家族 ,它们既有各自的特征 ,又有相似之处 ,这些技术之间的联合研究和系统分析无疑将促进表面增强光学效应的理论和应用的发展。总之 ,随着实验和理论方法的进一

关于傅立叶变换拉曼光谱技术的介绍

  傅立叶变换拉曼光谱是上世纪90年代发展起来的新技术,1987年,Perkin Elmer公司推出第一台近红外激发傅立叶变换拉曼光谱(NIR FT—R)仪,采用傅立叶变换技术对信号进行收集,多次累加来提高信噪比,并用1064mm的近红外激光照射样品,大大减弱了荧光背景。从此,Fr—Raman在化学

关于拉曼光谱仪的光源简介

  它的功能是提供单色性好、功率大并且最好能多波长工作的入射光。目前拉曼光谱实验的光源己全部用激光器代替历史上使用的汞灯。对常规的拉曼光谱实验,常见的气体激光器基本上可以满足实验的需要。在某些拉曼光谱实验中要求入射光的强度稳定,这就要求激光器的输出功率稳定。

关于拉曼光谱的基本信息介绍

  拉曼光谱(Raman spectra),是一种散射光谱。拉曼光谱分析法是基于印度科学家C.V.拉曼(Raman)所发现的拉曼散射效应,对与入射光频率不同的散射光谱进行分析以得到分子振动、转动方面信息,并应用于分子结构研究的一种分析方法。

拉曼集成系统

拉曼集成系统 便携式 手持式 应用 ·药厂原辅料检测 ·材料 ·生命科学 ·食品安全 ·珠宝考古 ·生物医学 ·石油化工 ·毒品、违禁品快速检测 ·爆炸物快速检测 ·物证鉴定 ·缉毒、缉私 ·反恐防暴 产品特点 ·快速精确 ·合法合规 ·操作简单 ·轻巧便

共聚焦拉曼

半导体激光器逐渐在电信、材料加工和医药领域找到一席之地,但其特性经常受到光钎耦合效率损耗和在高输出功率处激光亮度的限制。扩展激光器结构把窄条激光器的模品质与宽条激光器的高输出功率结合来克服这些问题,但是直到今天它们仍存在另外问题。扩展掩埋脊形的半导体激光器,已产生650mW输出功率。波导宽度从2~8

拉曼光谱技术

1. 拉曼点扫面积有多大?显微镜物镜出口的激光光斑的直径约1-2微米。拉曼成像的区域大小更多取决于自动平台的移动范围,尺度和自动平台相关,有75X50mm,100X80mm,300X300mm等选择。2. 表面增强拉曼能否表征金膜表面修饰的单分子层自组装膜的形态?如膜的缺陷可以,前提是你的单分子膜有