Antpedia LOGO WIKI资讯

体内荧光成像技术的进展(三)

成像新策略的出现改进探针亲和性的多种途径探针同靶点的紧密和特异性结合通常是成像成功的关键。因为许多成像靶点都位于细胞表面之外,所以多途径原则可以用来改善探针的结合亲和性。最近有两篇文献报道了用于异种移植肿瘤αvβ3 整合素(integrin)体内成像的RGD(Arg-Gly-Asp )寡肽的设计。Cheng等合成了单体、二体和四体环RGD,并将它们耦合于Cy5.5,用于活小白鼠的肿瘤成像实验。Cy5.5-RGD 四体表现出最高的肿瘤吸收活性和最高的肿瘤-本底荧光比。Ye等对完整小白鼠中的线形多体RGD–cypate(一种近红外碳花青素分子探针)耦合物的内在化和定位进行了监控,发现αvβ3 整合素受体结合亲和性和肿瘤吸收依赖于多价RGD成分的数目和空间排布。 寻找新探针的噬菌体文库筛选法对系统的分子库筛选策略的研究已有很长时间,这类研究的目的是鉴定靶点特异性抑制剂和先导药物,最近已把此类研究延伸到分子成像领域。Ne......阅读全文

体内荧光成像技术的进展(三)

成像新策略的出现改进探针亲和性的多种途径探针同靶点的紧密和特异性结合通常是成像成功的关键。因为许多成像靶点都位于细胞表面之外,所以多途径原则可以用来改善探针的结合亲和性。最近有两篇文献报道了用于异种移植肿瘤αvβ3 整合素(integrin)体内成像的RGD(Arg-Gly-Asp )寡肽的

体内荧光成像技术的进展(二)

可激活定靶探针可激活定靶探针一般用于酶活的功能成像。它们往往含有两个以上的等同或不同的色素团,两个色素团通过酶特异性多肽接头彼此紧密相连。这类探针主要呈黑色,没有或者很少发射荧光,这主要是由于非常相近(等同色素团)或者共振能的转移(不同色素团 )所造成的淬灭效应所致。多肽接头的切除,使它们的

体内荧光成像技术的进展(一)

体内荧光成像技术利用一架灵敏的照相机,检测活的整体小动物荧光团的荧光发射,从而获得清晰的图像。为了克服活组织的光子衰减,通常优先选取近红外区(NIR)的长波发射荧光团,包括广泛应用的小分子靛炭菁染料。NIR探针的数目最近随着有机、无机和生物荧光纳米颗粒的采用而不断增加。在体内荧光成像领域,成像策略和

活体动物体内生物发光和荧光成像技术基础原理与应用三

4.干细胞及免疫学用荧光素酶标记干细胞有以下几种方法:一种是标记组成性表达的基因,做成转基因动物,干细胞就被标记了,若干细胞移植到另外动物体内,可以用活体生物发光成像技术示踪干细胞在体内的增殖、分化及迁徙的过程;另外一种方法是用慢病毒直接标记干细胞后,移植到体内观测其增殖、分化及迁徙过程,研究其修复

小动物体内可见光三维成像技术研究进展(三)

1.2 单角度三维成像技术 单角度三维成像技术是相对于多角度扫描技术而命名的,是利用不同波长的光对动物组织的穿透性不同这一特性(例如红光在体内的穿透性远远大于绿光)。采用不同的滤光片在560 - 660nm获得多个(至少二个)波长的图像信息。举个例子:绿光波长较红光波长短,相对更难穿透组织。

时域体内荧光成像技术应用于实验性脑中风血脑...(三)

脑损伤的组织学评估在一些实验中,成像结果通过脑组织的组织学平估来确定。成像后,动物被灌注肝素化盐水和10%的福尔马林,然后使用Vibrotome切片,切成25µm厚的断片。邻近的部分都使用苏木精和曙红进行组织化学染色,来鉴定受损区域,或者使用异硫氰酸荧光素(FITC)(1:100;30min)鉴别脑

FluorCam叶绿素荧光成像技术应用案例(三)

上海生命科学研究院青年研究组长、博士生导师Chanhong Kim在苏黎世联邦理工学院、康奈尔大学博伊斯汤普森研究所工作期间就已经使用FluorCam叶绿素荧光成像系统进行了大量的研究工作并在PNAS、Plant Cell发表多篇相关文献。2014年,Chanhong Kim到上海生

雷达三维成像技术取得进展

  日前,国防科技大学王雪松团队提出一种新型雷达三维成像理论和方法,在国际上首次实现对车辆等典型人造目标的三维高分辨成像。相关研究在《地球科学与遥感》发表后,引起国际同行的高度关注。据IEEE官网统计,在最近数月内该网遥感领域最受欢迎的25篇论文中,该论文位居第一。   三维乃至多维成像是当前雷达

小动物体内可见光三维成像技术研究进展(一)

小动物体内可见光三维成像技术研究进展杨华瑜1,韩 彧2,董洪莹2,赵春林2*(1 中国医学科学院 中国协和医科大学 北京协和医院 肝脏外科, 北京 100730;2 北京龙脉得- 冷泉港生物技术有限公司, 北京 100084)摘 要:活体动物体内可见光成像是采用生物发光和荧光为标记物,利用灵敏的仪器

小动物体内可见光三维成像技术研究进展(四)

2 三维成像结果与动物器官的关系通过DLIT 和FLIT技术可以获得动物生物发光和荧光的三维成像图,这一结果是基于和拓扑表面图像结合的结果,并没有与动物体内的器官建立相对应的关联。为了能够更准确地定位信号源在体内所在的器官,使用不同断层的病理切片和小鼠不同姿势的CT 图谱,建立了数字化的