小动物活体成像技术概览(一)
1. 背景和原理:1999年,美国哈佛大学Weissleder等人提出了分子影像学(molecular imaging)的概念——应用影像学方法,对活体状态下的生物过程进行细胞和分子水平的定性和定量研究。传统成像大多依赖于肉眼可见的身体、生理和代谢过程在疾病状态下的变化,而不是了解疾病的特异性分子事件。分子成像则是利用特异性分子探针追踪靶目标并成像。这种从非特异性成像到特异性成像的变化,为疾病生物学、疾病早期检测、定性、评估和治疗带来了重大的影响。分子成像技术使活体动物体内成像成为可能,它的出现,归功于分子生物学和细胞生物学的发展、转基因动物模型的使用、新的成像药物的运用、高特异性的探针、小动物成像设备的发展等诸多因素。目前,分子成像技术可用于——研究观测特异性细胞、基因和分子的表达或互作过程,同时检测多种分子事件,追踪靶细胞,药物和基因治疗最优化,从分子和细胞水平对药物疗效进行成像,从分子病理水平评估疾病发展过程,对同一个动物......阅读全文
小动物活体成像
小动物活体成像 主要采用生物发光(bioluminescence)与荧光(fluorescence)两种技术。生物发光是用荧光素酶(Luciferase)基因标记细胞或DNA,而荧光技术则采用荧光报告基团(GFP、RFP, Cyt及dyes等)进行标记。利用一套非常灵敏的光学检测仪器,
小动物活体成像
小动物活体成像主要采用生物发光(bioluminescence)与荧光(fluorescence)两种技术。生物发光是用荧光素酶(Luciferase)基因标记细胞或DNA,而荧光技术则采用荧光报告基团(GFP、RFP, Cyt及dyes等)进行标记。利用一套非常灵敏的光学检测仪器,让研究人员能够直
小动物活体成像原理
体动物体内光学成像主要采用生物发光与荧光两种技术。生物发光是用荧光素酶基因(Luciferase)标记细胞或 DNA,而荧光技术则采用绿色荧光蛋白、红色荧光蛋白等荧光报告基因和 FITC、Cy5、Cy7 等荧光素及量子点 (quantumdot,QD) 进行标记。小动物活体成像技术是采用高灵敏度制冷
小动物活体成像技术
1、背景和原理1999年,美国哈佛大学Weissleder等人提出了分子影像学(molecular imaging)的概念——应用影像学方法,对活体状态下的生物过程进行细胞和分子水平的定性和定量研究。传统成像大多依赖于肉眼可见的身体、生理和代谢过程在疾病状态下的变化,而不是了解疾病的特异性分子事件。
小动物活体成像原理
体动物体内光学成像主要采用生物发光与荧光两种技术。生物发光是用荧光素酶基因(Luciferase)标记细胞或 DNA,而荧光技术则采用绿色荧光蛋白、红色荧光蛋白等荧光报告基因和 FITC、Cy5、Cy7 等荧光素及量子点 (quantumdot,QD) 进行标记。小动物活体成像技术是采用高灵敏度制冷
小动物活体成像系统比较
分子影像产品的研究与发展,是伴随着分子影像成像理论和成像算法的发展而逐步发展的。在荧光标记的分子成像方面,目前世界上仅有少数实验室研制成功可以对小动物进行跟踪性在体荧光断层分子影像的系统,并接连在Nature/Science上发表一系列突破性研究进展。 近年来,国外某些公司改进了现有的体外荧光成像
小动物活体成像技术概览(四)
成像设备主要应用领域优点缺点PET报告基因表达,小分子示踪高灵敏性,同位素自然替代靶分子,可进行定量移动研究需要回旋加速器或发生器,相对低的空间分辨率,辐射损害,价格昂贵SPECT报告基因表达,小分子示踪同时使用多种分子探针,能同时成像,适于用作临床成像系统相对较低的空间分辨率,辐射损害生物体之发光
小动物活体成像技术概览(二)
光在哺乳动物组织内传播时会被散射和吸收,光子遇到细胞膜和细胞质时会发生折射现象,而且不同类型的细胞和组织吸收光子的特性并不一样。在偏红光区域, 大量的光可以穿过组织和皮肤而被检测到。利用灵敏的活体成像系统最少可以看到皮下的500个细胞,当然,由于发光源在老鼠体内深度的不同可看到的最少细胞数是不同
小动物活体成像技术概览(三)
2-4超声成像此外,超声分子影像学是近几年超声医学在分子影像学方面的研究热点。它是利用超声微泡造影剂介导来发现疾病早期在细胞和分子水平的变化,有利于人们更早、更准确地诊断疾病。通过此种方式也可以在患病早期进行基因治疗、药物治疗等,以期在根本上治愈疾病。2-5CT成像CT成像是利用组织的密度不同造成对
小动物活体成像系统怎么选择
小动物活体成像技术有很多,大概分为两大类:一类是用来获取解剖学结构信息的技术,可以获得物理结构,骨胳、器官位置大小等,比如说CT,核磁MRI,或者是超声;另一类是功能学成像技术,是用来获取功能学信息的,比如说细胞功能,bio-marker功能,器官功能等等,目前最常用的功能学技术包括光学成像,使用放
小动物活体成像系统怎么选择
小动物活体成像技术有很多,大概分为两大类:一类是用来获取解剖学结构信息的技术,可以获得物理结构,骨胳、器官位置大小等,比如说CT,核磁MRI,或者是超声;另一类是功能学成像技术,是用来获取功能学信息的,比如说细胞功能,bio-marker功能,器官功能等等,目前最常用的功能学技术包括光学成像,使用放
小动物活体成像技术概览(一)
1. 背景和原理:1999年,美国哈佛大学Weissleder等人提出了分子影像学(molecular imaging)的概念——应用影像学方法,对活体状态下的生物过程进行细胞和分子水平的定性和定量研究。传统成像大多依赖于肉眼可见的身体、生理和代谢过程在疾病状态下的变化,而不是了解疾病的特异性分子事
如何选择小动物活体荧光成像系统
小动物活体荧光成像技术在国内外得到越来越的普及应用,越来越多的科研人员希望能通过该技术来长时间追踪观察活体动物体内肿瘤细胞的生长以及对药物治疗的反应,希望能观察到荧光标记的多肽、抗体、小分子药物在体内的分布和代谢情况。与传统技术相比,活体荧光成像技术不需要杀死动物,可以对同一个动物进行长时间反复跟踪
如何选择小动物活体荧光成像系统
小动物活体荧光成像技术在国内外得到越来越的普及应用,越来越多的科研人员希望能通过该技术来长时间追踪观察活体动物体内肿瘤细胞的生长以及对药物治疗的反应,希望能观察到荧光标记的多肽、抗体、小分子药物在体内的分布和代谢情况。与传统技术相比,活体荧光成像技术不需要杀死动物,可以对同一个动物进行长时间反复跟踪
如何选择小动物活体荧光成像系统
小动物活体荧光成像技术在国内外得到越来越的普及应用,越来越多的科研人员希望能通过该技术来长时间追踪观察活体动物体内肿瘤细胞的生长以及对药物治疗的反应,希望能观察到荧光标记的多肽、抗体、小分子药物在体内的分布和代谢情况。与传统技术相比,活体荧光成像技术不需要杀死动物,可以对同一个动物进行长时间反复跟踪
如何选择小动物活体荧光成像系统
小动物活体荧光成像技术在国内外得到越来越的普及应用,越来越多的科研人员希望能通过该技术来长时间追踪观察活体动物体内肿瘤细胞的生长以及对药物治疗的反应,希望能观察到荧光标记的多肽、抗体、小分子药物在体内的分布和代谢情况。与传统技术相比,活体荧光成像技术不需要杀死动物,可以对同一个动物进行长时间反复跟踪
如何选择小动物活体荧光成像系统
小动物活体荧光成像技术在国内外得到越来越的普及应用,越来越多的科研人员希望能通过该技术来长时间追踪观察活体动物体内肿瘤细胞的生长以及对药物治疗的反应,希望能观察到荧光标记的多肽、抗体、小分子药物在体内的分布和代谢情况。与传统技术相比,活体荧光成像技术不需要杀死动物,可以对同一个动物进行长时间反复跟踪
如何选择小动物活体荧光成像系统?
小动物活体荧光成像技术在国内外得到越来越的普及应用,越来越多的科研人员希望能通过该技术来长时间追踪观察活体动物体内肿瘤细胞的生长以及对药物治疗的反应,希望能观察到荧光标记的多肽、抗体、小分子药物在体内的分布和代谢情况。 与传统技术相比,活体荧光成像技术不需要杀死动物,可以对同一个
如何选择小动物活体荧光成像系统
小动物活体荧光成像技术在国内外得到越来越的普及应用,越来越多的科研人员希望能通过该技术来长时间追踪观察活体动物体内肿瘤细胞的生长以及对药物治疗的反应,希望能观察到荧光标记的多肽、抗体、小分子药物在体内的分布和代谢情况。与传统技术相比,活体荧光成像技术不需要杀死动物,可以对同一个动物进行长时间反复跟踪
小动物活体成像技术的应用领域
癌症与抗癌药物研究 ,免疫学与干细胞研究 ,细胞凋零 ,病理机制及病毒研究 ,基因表达和蛋白质之间相互作用 ,转基因动物模型构建 ,药效评估 ,药物甄选与预临床检验 ,药物配方与剂量管理 ,肿瘤学应用 ,生物光子学检测 ,食品监督与环境监督等。
小动物活体成像技术的原理及操作方法
小动物活体成像 主要采用生物发光(bioluminescence)与荧光(fluorescence)两种技术。生物发光是用荧光素酶(Luciferase)基因标记细胞或DNA,而荧光技术则采用荧光报告基团(GFP、RFP, Cyt及dyes等)进行标记。利用一套非常灵敏的光学检测仪器,让研究人员能够
影响小动物活体可见光成像的因素(一)
小动物活体成像,是分子影像学的一种,主要通过生物发光(bioluminescence)与荧光(fluorescence)两种技术来进行。生物发光是用荧光素酶(Luciferase)基因标记细胞或DNA,而荧光技术则采用荧光报告基团(GFP、RFP, Cyt及dyes等)进行标记。自从1999年,美国
MARS-近红外二区小动物活体成像系统
品牌/产地:恒光智影/中国。 型号:MARS。 MARS近红外二区小动物活体成像系统采用顶级科研Teledyne Princeton Instruments牌InGaAs相机,其出色的量子效率与先进的噪声抑制技术为高品质成像提供保证。 产品概述: MARS近红外二区小动物活体成像系统突破
影响小动物活体可见光成像的因素(二)
3 对于同样级别的CCD芯片来讲,信噪比的高低则对最后的成像质量更为关键,因为信噪比不仅与CCD本身有关,更与系统的整体配置和环境密切相关。下面这个公式显示了信噪比(SNR)的计算方法,从中可以看到,QE值,读出噪声和暗噪声是影响SNR的主要因素,单纯强调任何一个方面都不具有实际意义。Roper公司
影响小动物活体可见光成像的因素(三)
然而,在活体成像过程,并不是总能保持各方面因素都达到最佳状态,那么在这种情况下,应该从哪些方面考虑,去获得高质量的图片呢?北京博益伟业仪器有限公司通过对一系列的实验结果分析后,建议:首先:构建带有强启动子的融合表达蛋白。这是整个活体成像的第一步,也是最重要的一步。从上面的分析可以看出,启动子的强弱对
耶拿发布新品小动物活体成像仪UVP-BioSpectrum-Advanced
2023年7月11日,第十一届慕尼黑上海分析生化展(以下简称:analytica China)在国家会展中心(上海)正式拉开帷幕,各大仪器厂商纷纷携重磅产品盛装亮相。德国耶拿在analytica China 现场举办了UVP BioSpectrum Advanced—小动物活体成像仪新品发布会
天美携手UVP举办活体小动物成像仪器应用介绍会
2011年10月11日上午,天美(中国)科学仪器有限公司携手美国UVP公司和美国抗癌公司一起在北京德宝饭店,举办了一期有关活体小动物成像方面的仪器应用介绍会。 此次介绍会主要介绍了UVP 的iBox Scientia 500 (活体动物肿瘤在大体水平上的成像),及iBox Explorer
活体成像概述
一、引子 自从Roentgen发现了X光的用途,动物活体成像就走进了科学家的视野。活体成像有很多种模式,除了X光的离子辐射成像,还有声音、磁铁甚至光光成像。每种都有缺点和优点,举例来说,要确定解剖结构的位置和形状,CT扫描、MRI、超声波可能是较好的选择,但涉及到肿瘤细胞的注射位置、表达层面,他们
五种小动物活体成像专用设备特点、应用及优缺点比较-三
4.小动物MRIMRI是依据所释放的能量在物质内部不同结构环境中不同的衰减,而绘制出物体内部的结构图像。相对于CT,MRI具有无电离辐射性(放射线)损害,高度的软组织分辨能力,无需使用对比剂即可显示血管结构等独特优点。对于核素和可见光成像,小动物MRI的优势是具有微米级的高分辨率及低毒性;在某些应用
五种小动物活体成像专用设备特点、应用及优缺点比较-一
摘要:随着小动物成像技术的发展,活体小动物非侵袭性成像在临床前研究中发挥着越来越重要的作用。本文围绕五种小动物成像专用设备,综述其特点及主要应用,比较各种设备的优势和劣势,总结小动物活体成像设备的发展趋势。动物模型是现代生物医学研究中重要的实验方法与手段,有助于更方便、更有效地认识人类疾病的发生、发