尿素对蛋白质的变性作用(denaturationofprotein)
一、实验目的深入了解蛋白质的变性作用的含义。2.掌握常用蛋白质变性剂的种类。二、实验原理天然蛋自质分子中的肽链以一定的方式盘绕曲折,形成特定的构象。这种构象的维持,主要依赖于蛋白质分子中的氢键。尿素能破坏氢键,导致蛋白质分子结构松弛,使蛋白质变性,变性后,蛋白质的肽链就伸展开来,从而使原来包藏在分子内部的-SH 暴露,能与巯基试剂作用,在一定范围内,暴露的-SH 随着变性程度的加深而增加,因此测定-SH 的增加,可衡量蛋自质的变性程度。在碱性条件下,-SH 可被亚硝基铁氰化钠N[Fe(NO)(CN)5]2-氧化成-S-S(二硫键),氧化剂的铁由高价还原成低价,其配合物呈红色。产生红色配合物的量与-SH 量成正比,可用比色法(520nm)测定,由于-SH 在重金属离子催化下,易被空气氧所氧化,故在反应体系中加入少许氧化物抑制这种反应。三、仪器、原料和试剂仪器试管 1.5cm×15cm(×27)、刻度试管5.0m1(×1......阅读全文
蛋白质的理化性质(一)
蛋白质是由氨基酸组成的大分子化合物,其理化性质一部分与氨基酸相似,如两性电离、等电点、呈色反应、成盐反应等,也有一部分又不同于氨基酸,如高分子量、胶体性、变性等。 一、蛋白质的胶体性质 蛋白质分子量颇大,介于一万到百万之间,故其分子的大小已达到胶粒1~100nm范围之内。球状蛋白质的表面多
蛋白质纯化(protein-purification)实用技术2
7.密度多数蛋白质的密度在1.3~1.4g/cm3之间,分级分离蛋白质时一般不常用此性质,不过对含有大量磷酸盐或脂质的蛋白质与一般蛋白质在密度上明显不同,可用密度梯度法离心与大部分蛋白质分离。8.基因工程构建的纯化标记通过改变cDNA在被表达的蛋白的氨基端或羧基端加入少许几个额外氨基酸,这个加入的标
蛋白质提取与制备(Protein-Extraction-and-Preparation)2
三、蛋白质提取与制备具体操作方法1、原料的选择早年为了研究的方便,尽量寻找含某种蛋白质丰富的器官从中提取蛋白质。但至目前经常遇到的多是含量低的器官或组织且量也很小,如下丘脑、松果体、细胞膜或内膜等原材料,因而对提取要求更复杂一些。原料的选择主要依据实验目的定。从工业生产角度考虑,注意选含量高、来源丰
蛋白质纯化(protein-purification)实用技术3
10.非极性基团之间作用力溶质分子中的非极性基团与非极性固定相间的相互作用力(非选择性分散力或伦敦力)大小与溶质分子极性基团与流动力相中极性分子在相反方向上相互作用力的差异进行分离。因其流动相中的置换剂是极性小于水的有机溶剂(如甲醇、乙腈、四氢呋喃等),这些有机溶剂可能使许多蛋白质分子产生不可逆的变
蛋白质提取与制备(Protein-Extraction-and-Preparation)4
蛋白质提取液中,除包含所需要的蛋白质(或酶)外,还含有其它蛋白质、多糖、脂类、核酸及肽类等杂质。除去的方法有:1)核酸沉淀法该法可用核酸沉淀剂和氯化锰、硫酸鱼精蛋白或链霉素等。必要时也可用脱氧核糖核酸酶除去核酸。即在粗匀浆中加入少量DNase,于4℃保温30~60min,可使DNA 降解为足够小的碎
蛋白质提取与制备(Protein-Extraction-and-Preparation)3
水溶液提取:大部分蛋白质均溶于水、稀盐、稀碱或稀酸溶液中。因此蛋白质的提取一般以水为主。稀盐溶液和缓冲溶液对蛋白质稳定性好、溶度大,也是提取蛋白质的最常用溶剂。盐溶液提取:以盐溶液及缓冲液提取蛋白质进常注意下面几个因素。盐浓度等渗盐溶液尤以0.02~0.05mol/L 磷酸盐缓冲液和碳酸盐缓冲液常用
蛋白质提取与制备(Protein-Extraction-and-Preparation)6
PH 值:与沉淀蛋白质或酶原理相同,结晶的溶液PH 值一般选择在被结晶的蛋白质或酶的等电点附近,以利于晶体的析出。温度:除少数情况外,通常选择低温条件进行。低温条件对蛋白质和酶不仅溶解度低且不易变性。在中性盐溶液中结晶时,温度可在0℃至室温范围内选择,在有机溶剂中结晶一般要求温度较低。晶种:不易结晶
蛋白质提取与制备(Protein-Extraction-and-Preparation)1
蛋白质提取与制备蛋白质种类很多,性质上的差异很大,既或是同类蛋白质,因选用材料不同,使用方法差别也很大,且又处于不同的体系中,因此不可能有一个固定的程序适用各类蛋白质的分离。但多数分离工作中的关键部分基本手段还是共同的,大部分蛋白质均可溶于水、稀盐、稀酸或稀碱溶液中,少数与脂类结合的蛋白质溶于乙醇、
蛋白质纯化(protein-purification)实用技术1
研究的最后还是要看基因表达产物,无论是用于检测还是用于棉衣保护,都需要将表达出的蛋白质分离和纯化,然而蛋白质性质各异,故纯化方法不同,现共享一些基本的纯化方法,以飨读者:蛋白质的一级、二级、三级和四级结构决定了它的物理、化学、生物化学、物理化学和生物学性质,综述了不同蛋白质之间的性质存在差异或者改变
蛋白质提取与制备(Protein-Extraction-and-Preparation)5
确定沉淀蛋白质所需硫酸铵浓度的方法将少量样品冷却到0~5℃,然后搅拌加入固体硫酸铵粉末,见蛋白质产生沉淀时,离心除去沉淀,分析上清液确定所要蛋白质的浓度,如它仍在溶液中则弃去沉淀,再加更多的硫酸铵于上清液中,直到产生蛋白质沉淀时止。以所要提取的蛋白质在溶液中的浓度对硫酸铵浓度作图,得沉淀曲线,找出蛋
牛膝对蛋白质同化作用
牛膝所含蜕皮甾酮具有较强的蛋白质合成促进作用。实验给小鼠灌胃或腔注射1次蜕皮甾酮后2小时,即可见小鼠肝脏细胞核、线粒体及微粒体中氨基酸前体掺入增多,4小时后作用更强。同时在肾脏也可见蛋白质合成增强现象,但于4小时后回复原有水平。蔗糖密度样度离心分析表明,给药血RNA较对照血具有2倍的铸型活性,提
Antibody-Purification-using-Protein-A,-Protein-G,-or-Protein-L-Agarose
实验概要This protocol is designed as a quick purification method for antibodies from mammalian sera, ascites, and cell culture supernatants. It should
Antibody-Purification-using-Protein-A,-Protein-G,-or-Protein-L-Agarose
实验概要This protocol is designed as a quick purification method for antibodies from mammalian sera, ascites, and cell culture supernatants主要试剂 Protein
什么核酸变性?
在一定理化因素作用下,核酸双螺旋等空间结构中碱基之间的氢键断裂,变成单链的现象称为变性(denaturation)。引起核酸变性的常见理化因素有加热、酸、碱、尿素和甲酰胺等。在变性过程中,核酸的空间构象被破坏,理化性质发生改变。由于双螺旋分子内部的碱基暴露,其A260值会大大增加。A260值的增加与
核酸的变性相关介绍
在一定理化因素作用下,核酸双螺旋等空间结构中碱基之间的氢键断裂,变成单链的现象称为变性(denaturation)。 引起核酸变性的常见理化因素有加热、酸、碱、尿素和甲酰胺等。在变性过程中,核酸的空间构象被破坏,理化性质发生改变。由于双螺旋分子内部的碱基暴露,其A260值会大大增加。A260值
核酸变性的概念、诱因
在一定理化因素作用下,核酸双螺旋等空间结构中碱基之间的氢键断裂,变成单链的现象称为变性(denaturation)。引起核酸变性的常见理化因素有加热、酸、碱、尿素和甲酰胺等。在变性过程中,核酸的空间构象被破坏,理化性质发生改变。由于双螺旋分子内部的碱基暴露,其A260值会大大增加。A260值的增加与
使蛋白质盐析和变性的原因
盐析是因为高浓度的盐溶液是蛋白质的溶解性降低导致析出,是可逆过程.变性是因为强酸、强碱或重金属离子破坏蛋白质的结构,是不可逆过程.
解析蛋白质的盐溶、盐析和变性
在中学化学教学中,在讲到油脂、蛋白质以及胶体时,经常要解释油脂皂化反应后高级脂肪酸钠与甘油的分离,为何要加细小食盐颗粒?食盐是如何使高级脂肪酸钠从溶液中析出的?在蛋白质溶液中为何加少量的硫酸铵能促进蛋白质的溶解,而加高浓度的硫酸铵却会使蛋白质析出呢?而硫酸铜溶液同样是盐溶液却使析出的蛋白质不像前
蛋白质的变性、复性及别构效应
蛋白质变性(denaturation):生物大分子的天然构象遭到破坏导致其生物活性丧失的现象。蛋白质在受到光照,热,有机溶剂以及一些变性剂的作用时,次级键受到破坏,导致天然构象的破坏,使蛋白质的生物活性丧失。复性(renaturation):在一定的条件下,变性的生物大分子恢复成具有生物活性的天然构
酒精使蛋白质变性的原理
蛋白质的空间结构发生变化,从而引起蛋白质理化性质和生物功能改变。乙醇在医学方面可做为一种消毒剂,乙醇作用于细菌细胞首先起到脱水作用,乙醇分子进入到蛋白质分子的肽链环节,使蛋白质发生变性沉淀;这种作用在70%的含量下显得更强。乙醇可导致蛋白质分子间易形成氢键。变性原因:变性作用是蛋白质受物理或化学因素
蛋白质按结构种类分类
纤维蛋白(fibrous protein):一类主要的不溶于水的蛋白质,通常都含有呈现相同二级结构的多肽链许多纤维蛋白结合紧密,并为单个细胞或整个生物体提供机械强度,起着保护或结构上的作用。球蛋白(globular protein):紧凑的,近似球形的,含有折叠紧密的多肽链的一类蛋白质,许多都溶于水
尿素在包涵体复性中的作用
①包涵体就是蛋白的变性聚集后的产物,6M盐酸胍及8M尿素是作为溶解包涵体的溶剂。②复性的过程是逐步去除盐酸胍或者尿素,从而使得蛋白天然构象逐步形成。所以一般如果起始使用的是6M盐酸胍进行包涵体溶解,这个过程中逐步降低的是盐酸胍的浓度。
蛋白质三级结构(tertiary-structure-of-protein)的预测软件
由于用X光晶体衍射和NMR核磁共振技术测定蛋白质的三维结构,以及用生化方法研究蛋白质的功能效率不高,无法适应蛋白质序列数量飞速增长的需要,因此近几十年来许多科学家致力于研究用理论计算的方法预测蛋白质的三维结构和功能,经过多年努力取得了一定的成果。蛋白质三维结构的预测方法通常包括:同源性建模和从头开始
蛋白质的盐析与变性有何不同
1、性质不同:盐析是在蛋白质水溶液中加入中性盐,随着盐浓度增大而使蛋白质沉淀出来的现象。蛋白质变性是受物理或化学因素的影响,改变其分子内部结构和性质的作用。2、特点不同:蛋白质变性的同一多肽链中的氨基和酰基之间可以形成氢键或肽链间形成氢键,使得这一多肽链的主链具有一定的有规则构象。盐析在蛋白质溶液中
乙醇与蛋白质的沉淀和变性实验
乙醇引起的变性与沉淀先加入蛋白液溶解,加入NaCl(盐析)降低蛋白质溶解度,形成过饱和溶液,再加入乙醇现象会更明显些。变性的蛋白质是不会再溶于稀酸或稀碱了,应为变性即意味着结构的永久改变。你的试验中乙醇的最终浓度是95%*1ml/3ml=32%,而且最后蛋白会再溶解。因此,这个实验不足以证明蛋白质变
乙醇与蛋白质的沉淀和变性实验
乙醇引起的变性与沉淀先加入蛋白液溶解,加入NaCl(盐析)降低蛋白质溶解度,形成过饱和溶液,再加入乙醇现象会更明显些。变性的蛋白质是不会再溶于稀酸或稀碱了,应为变性即意味着结构的永久改变。你的试验中乙醇的最终浓度是95%*1ml/3ml=32%,而且最后蛋白会再溶解。因此,这个实验不足以证明蛋白质变
关于蛋白质变性的应用价值介绍
1、鸡蛋、肉类等经加温后蛋白质变性,熟后更易消化。 2、细菌、病毒加热,加酸、加重金属(汞)因蛋白质变性而灭活(灭菌、消毒)。 3、动物、昆虫标本固定保存、防腐。 4、很多毒素是蛋白质,加甲醛固定,减毒、封闭毒性碱基团作类毒素抗原,制作抗毒素。 5、用于蛋白纯化中杂蛋白的沉淀。
乙醇与蛋白质的沉淀和变性实验
乙醇引起的变性与沉淀先加入蛋白液溶解,加入NaCl(盐析)降低蛋白质溶解度,形成过饱和溶液,再加入乙醇现象会更明显些。变性的蛋白质是不会再溶于稀酸或稀碱了,应为变性即意味着结构的永久改变。你的试验中乙醇的最终浓度是95%*1ml/3ml=32%,而且最后蛋白会再溶解。因此,这个实验不足以证明蛋白质变
蛋白质二级结构预测(protein-secondary-structure-prediction)
蛋白质二级结构的预测开始于20世纪60年代中期。二级结构预测的方法大体分为三代,第一代是基于单个氨基酸残基统计分析,从有限的数据集中提取各种残基形成特定二级结构的倾向,以此作为二级结构预测的依据。第二代预测方法是基于氨基酸片段的统计分析,使用大量的数据作为统计基础,统计的对象不再是单个氨基酸残基,而
蛋白质二级结构(protein-secondary-structure)预测软件
蛋白质二级结构的预测通常被认为是蛋白结构预测的第一步,二级结构是指α螺旋和β折叠等规则的蛋白质局部结构元件。不同的氨基酸残基对于形成不同的二级结构元件具有不同的倾向性。按蛋白质中二级结构的成分可以把球形蛋白分为全α蛋白、全β蛋白、α+β蛋白和α/β蛋白等四个折叠类型。预测蛋白质二级结构的算法大多以已