科研人员在低盐浓度电解液基钠离子电池研究获进展
电解液是储能电池重要组成部分,调控电解液浓度是实现其功能化设计的有效策略之一。近年来,高盐浓度电解液因特殊的体相与界面特性被广泛用于金属锂电池、水系电池等。但与此相反,降低盐浓度可能会带来浓差极化,所以目前实际锂电池应用大多集中于标准的1 M浓度,低盐浓度电解液一直没有得到系统的研究。钠离子的Stokes半径和脱溶剂化能均比锂离子的要低,因此理论上采用较低的钠盐浓度也可实现足够的动力学性能,从而使得超低盐浓度电解液应用于钠离子电池成为可能。考虑到盐的成本通常是溶剂的十倍以上,减少钠盐使用可以有效降低钠离子电池的成本,有利于钠离子电池在储能领域的大规模应用。 近日,中国科学院物理研究所/北京凝聚态物理国家研究中心清洁能源重点实验室博士生李钰琦、杨佯在研究员胡勇胜、副研究员陆雅翔的指导下,将六氟磷酸钠(NaPF6)溶解于碳酸乙烯酯(EC)和碳酸丙烯酯(PC),设计了一种可应用至钠离子全电池的低盐浓度电解液(0.3 M浓度)。得......阅读全文
科研人员在低盐浓度电解液基钠离子电池研究获进展
电解液是储能电池重要组成部分,调控电解液浓度是实现其功能化设计的有效策略之一。近年来,高盐浓度电解液因特殊的体相与界面特性被广泛用于金属锂电池、水系电池等。但与此相反,降低盐浓度可能会带来浓差极化,所以目前实际锂电池应用大多集中于标准的1 M浓度,低盐浓度电解液一直没有得到系统的研究。钠离子的S
物理所蒋礼威在水系钠离子电池研究中取得进展
水系钠离子电池兼具钠资源储量丰富和水系电解液本质安全的双重优势,被视为一种理想的大规模静态储能技术。此前,研究人员针对水系钠离子电池体系做了一些探索(Nature Communications 2015, 6, 6401;Advanced Energy Materials 2015, 5, 15
钠离子电池对当前锂离子电池产业结构的影响
正极材料:由目前的三元体系锂盐或者磷酸铁锂改为层状过渡金属氧化物(比容量高,稳定性差)、聚阴离子化合物(稳定性高,比容量低)或普鲁士蓝及其衍生物以及有机化合物(比容量较高,稳定性差)等。负极材料:不同于锂离子电池的石墨系负极材料,钠离子电池负极材料一般为硬碳、软碳、复合碳等无定形碳材料。电解液:钠离
钠离子电池及其应用现状和趋势
1、钠离子电池产生的背景(1)锂钠同族,物化性质类似(2)锂资源稀缺,钠资源丰富锂资源的全球储量有限,锂元素在地壳中的含量仅为 0.0065%。随着新能源汽车的发 展对电池的需求大幅上升,资源端的瓶颈逐渐显现,成本较高限制了锂离子电池的大规模应用。钠资源储量非常丰富,地壳丰度为 2.64%,是锂资
科学家提出钠离子电池极端低温电解液设计策略
发展极端低温电池对于寒冷气候下人类活动以及极寒条件下太空探索和深海研究具有重要意义。然而,低温下的电解液尤其是水系电解液存在易冻结的问题,阻碍了电池在低温下应用。H2O-solute相图存在三类典型的温度参数——冰点(Tf)、共晶温度(Te)、玻璃化转变温度(Tg)。传统的低温防冻电解液设计策略一般
钠离子电池是什么电池?钠离子电池的工作原理和优势
钠离子电池(Sodium-ion battery),是一种二次电池(充电电池),主要依靠钠离子在正极和负极之间移动来工作,与锂离子电池工作原理相似。钠离子电池的工作原理钠离子电池在充放电过程中,Na+在两个电极之间往返嵌入和脱出:充电时,Na+从正极脱嵌,经过电解质嵌入负极;放电时则相反。新款186
钠离子电池是什么电池?钠离子电池的工作原理和优势
钠离子电池(Sodium-ion battery),是一种二次电池(充电电池),主要依靠钠离子在正极和负极之间移动来工作,与锂离子电池工作原理相似。钠离子电池的工作原理钠离子电池在充放电过程中,Na+在两个电极之间往返嵌入和脱出:充电时,Na+从正极脱嵌,经过电解质嵌入负极;放电时则相反。新款186
深圳先进院研发出基于钠离子电解液的新高效双离子电池
近日,中国科学院深圳先进技术研究院集成所功能薄膜材料研究中心研究员唐永炳及其研究团队成功研发出了一种新型高性能、低成本的钠型双离子电池,有望代替现有锂离子技术并实现产业化。相关研究成果A Novel Tin-Graphite Dual-Ion Battery Based on Sodium-Io
什么是钠离子电池?
钠离子电池(Sodium-ion battery),是一种二次电池(充电电池),主要依靠钠离子在正极和负极之间移动来工作,与锂离子电池工作原理相似。
钠离子电池的概念
钠离子电池(Sodium-ion battery),是一种二次电池(充电电池),主要依靠钠离子在正极和负极之间移动来工作,与锂离子电池工作原理相似。
钠离子电池的特性
钠离子电池的特性直接决定了钠离子电池未来的应用场景。钠离子电池跟当前电动汽车行业普遍使用的铅酸电池和锂离子电池的特性差异大致可以总结为几点: (1)能量密度方面:铅酸电池<钠离子电池<锂离子电池(2)安全性高,高低温性能优异(3)快充倍率高,有补能优势
钠离子电池有哪些优点?钠离子电池概念股有哪些?
钠离子电池的核心原材料储量更高、开采难度更低。数据表明,地壳当中钠的含量有2.75%,而且可以用海水制备金属钠,是储量丰富、可得性好的新能源电池材料。钠电池的BOM成本也比锂电池低20%,并且,比磷酸铁锂的成本更低。而且,高低温性能优异,在面对挤压、穿刺等情景时安全性也高,还具备快充能力。但是,钠离
钠离子电池的结构特点
钠离子电池使用的电极材料主要是钠盐,相较于锂盐而言储量更丰富,价格更低廉。由于钠离子比锂离子更大,所以当对重量和能量密度要求不高时,钠离子电池是一种划算的替代品。
钠离子电池的技术展望
(1)水系钠离子电池:本征安全的钠离子电池 以水溶液电解质替换有机电解质,能从根本上提高钠离子电池的安全性。目前人们已经报道了大量的水系钠离子电池体系方案,其中普鲁士蓝体系的循环性能最佳,已经开始产业化尝试,代表性企业有 Natron Energy、贲安能源等。长期来看,水系钠离子电池是一个非常有前
钠离子电池的技术特点
钠离子电池的核心原材料储量更高、开采难度更低。数据表明,地壳当中钠的含量有2.75%,而且可以用海水制备金属钠,是储量丰富、可得性好的新能源电池材料。钠电池的BOM成本也比锂电池低20%,并且,比磷酸铁锂的成本更低。而且,高低温性能优异,在面对挤压、穿刺等情景时安全性也高,还具备快充能力。但是,钠离
关于钠离子电池的简介
钠离子电池(Sodium-ion battery),是一种二次电池(充电电池),主要依靠钠离子在正极和负极之间移动来工作,与锂离子电池工作原理相似。 2018年12月,南京理工大学夏晖教授与中外团队合作,首创结构设计和调控方法,在锰基正极材料研究方面取得重要进展。
钠离子电池产生的背景
(1)锂钠同族,物化性质类似(2)锂资源稀缺,钠资源丰富锂资源的全球储量有限,锂元素在地壳中的含量仅为 0.0065%。随着新能源汽车的发 展对电池的需求大幅上升,资源端的瓶颈逐渐显现,成本较高限制了锂离子电池的大规模应用。钠资源储量非常丰富,地壳丰度为 2.64%,是锂资源的 440 倍,且钠资
钠离子电池的技术优点
钠离子电池的核心原材料储量更高、开采难度更低。数据表明,地壳当中钠的含量有2.75%,而且可以用海水制备金属钠,是储量丰富、可得性好的新能源电池材料。钠电池的BOM成本也比锂电池低20%,并且,比磷酸铁锂的成本更低。而且,高低温性能优异,在面对挤压、穿刺等情景时安全性也高,还具备快充能力。但是,钠离
钠离子电池的工作原理
钠离子电池在充放电过程中,Na+在两个电极之间往返嵌入和脱出:充电时,Na+从正极脱嵌,经过电解质嵌入负极;放电时则相反。新款18650钠离子电池,借助了钠离子转移(而不是锂离子)来存储和释放电能。
钠离子电池的工作原理
在充放电过程中,Na+在两个电极之间往返嵌入和脱出:充电时,Na+从正极脱嵌,经过电解质嵌入负极;放电时则相反。 新款18650钠离子电池,借助了钠离子转移(而不是锂离子)来存储和释放电能。
钠离子电池的工作原理
钠离子电池与锂离子电池工作原理类似,钠离子电池也遵循脱嵌式的工作原理(在充电过程中,钠离子从正极脱出并嵌入负极,嵌入负极的钠离子越多,充电容量越高;放电 时过程相反,回到正极的钠离子越多,放电容量越高)。钠离子电池和锂离子电池的主要区别在于正负极材料、电解液不同,尤其是正极材料的区别。
钠离子电池的工作原理
钠离子电池在充放电过程中,Na+在两个电极之间往返嵌入和脱出:充电时,Na+从正极脱嵌,经过电解质嵌入负极;放电时则相反。新款18650钠离子电池,借助了钠离子转移(而不是锂离子)来存储和释放电能。
钠离子电池的技术特点
一、钠离子电池优势: 1、资源丰富:不用多说 2、成本低:资源多,成本自然就低,综合成本比锂电池低30%。 3、安全性高:钠离子电池瞬间发热更少、稳定性更好,钠离子电池经历短路、针刺、挤压等测试后,无起火、无爆炸。 4、无过放电情况:正极可以放电至0V而不影响后续使用,进而使得电池在储存运输过程
钠离子电池的原理特点
钠离子电池也是一种二次电池(充电电池),主要依靠钠离子在正极和负极之间移动来工作,与锂离子电池工作原理相似。在充放电过程中,Na+在两个电极之间往返嵌入和脱出:充电时,Na+从正极脱嵌,经过电解质嵌入负极;放电时则相反。
钠离子电池和钠硫电池的性能差异
1、生产成本不同钠硫电池负极的活性物质是熔融金属钠,正极活性物质是液态硫和多硫化钠熔盐,这些材料都需要通过复杂的工序来制取,而钠离子电池的电极材料则是以钠盐为主,广泛存在于自然界,其价格要更低,生产成本也更低廉。2、工作温度不同钠离子电池主要是依靠钠离子在正负极之间来回移动来实现充放电,其原理与锂离
钠离子电池和钠硫电池有哪些区别?
自锂离子电池遇到技术瓶颈后,专家们开始寻找另一种全新的电池,其中钠离子电池是被认为可以替代锂离子电池的产品之一。钠离子电池是一种二次电池(充电电池),主要依靠钠离子在正极和负极之间移动来工作,与锂离子电池工作原理相似。钠离子电池使用的电极材料主要是钠盐,相较于锂盐而言储量更丰富,价格更低廉。由于钠离
我所设计开发出高稳定性钠离子电池用含氟阴离子组分的醚类电解液体系
原文地址:http://www.dicp.cas.cn/xwdt/kyjz/202401/t20240124_6969058.html近日,我所储能技术研究部(DNL17)李先锋研究员、郑琼研究员团队和中国科学院苏州纳米技术与纳米仿生研究所蔺洪振研究员合作,在钠离子电池电解液研究方面取得新进展。钠离
醚类电解液可促进钠离子低温环境快速传输
近日,西安交通大学电气学院王鹏飞教授课题组设计了一种低浓度的醚类电解液,抑制了低温下的盐析出现象,并在低温下形成了有机成分主导的稳定的整体式电极/电解液界面,促进了Na+在低温环境下的快速传输,该研究成果发表在《德国应用化学》上。电化学测试与分子动力学模拟的结果共同表明,该电解液的在低温下展现出优异
钠离子电池的定义和结构组成
钠离子电池,是一种二次电池,主要依靠钠离子在正极和负极之间移动来工作,与锂离子电池工作原理相似,两者都被称为“摇椅式”电池。 钠离子电池的主要构成为正极、负极、隔膜、电解液和集流体,其中正极和负极材料的结构和性能决定着整个电池的储钠性能。正负极之间通过隔膜隔开防止短路,电解液浸润正负极作为离子流通的
酸碱盐浓度变送器
酸、碱、盐浓度变送器通过测量溶液电导值来确定浓度。它可以在线连续检测工业过程中酸、碱、盐在水溶液中的浓度含量。这种变送器主要应用于锅炉给水处理、化工溶液的配制以及环保等工业生产过程。 酸、碱、盐浓度变送器的工作原理是:在一定的范围内,酸碱溶液的浓度与其电导率的大小成比例。因而,只要测出溶液电导