基于HFSS的天线阵列计算方法比较分析(二)
二、HFSS计算天线阵列方法汇整最为准确的天线阵场计算为全阵列计算。天线组阵后,各单元间会产生互耦;天线阵的边缘会存在场的绕射等边缘效应,这使得使用方向图乘积定理计算天线阵的场时变得不够准确。但考虑到大型阵列计算需要大量资源和时间,单元法作为估测阵列场分布有一定的指向意义。HFSS单元计算+阵列计算HFSS在进行电大尺寸电磁计算时显得捉襟见肘,可以使用单元法进行近似分析(基于方向图乘积定理)。主要步骤是先计算单独一个单元,再据此进行阵列演算。单元法主要可采用方法有:①主从边界+Floquent Port,主从边界所在边界尺寸为阵列单元间距(阵列为整体而辐射元独立的,如微带阵,主从边界与单元天线边缘叠合);②主从边界+PML,主从边界所在边界尺寸为阵列单元间距(阵列为整体而辐射元独立的,如微带阵,主从边界与单元天线边缘叠合);③单元天线加辐射边界。以下是采用单元法与全阵列计算结果对比的二组实例,分别是微带2x2阵列天线和波导3x3......阅读全文
基于HFSS的天线阵列计算方法比较分析(二)
二、HFSS计算天线阵列方法汇整最为准确的天线阵场计算为全阵列计算。天线组阵后,各单元间会产生互耦;天线阵的边缘会存在场的绕射等边缘效应,这使得使用方向图乘积定理计算天线阵的场时变得不够准确。但考虑到大型阵列计算需要大量资源和时间,单元法作为估测阵列场分布有一定的指向意义。HFSS单元计算+阵列计算
基于HFSS的天线阵列计算方法比较分析(三)
E面辐射方向图比较H面辐射方向图比较全尺寸阵列Floquent_Port+主从边界PML+主从边界辐射边界E面辐射方向图比较
基于HFSS的天线阵列计算方法比较分析(一)
摘要:阵列天线具有增益高、波束窄、指向可控等特点,在雷达和移动通信等场合得到广泛应用。阵列天线由于单元数较多,全阵列仿真计算对资源要求高,且需要花费大量时间。本文借助HFSS软件提供阵列计算几种常用的方式,通过比较分析各自优缺点,总结出最为准确的结果,为阵列计算提供一定参考和指导。关键词:阵列天线;
基于HFSS的天线阵列计算方法比较分析(四)
H面辐射方向图比较从以上结果可以看出,采用主从边界+Floquent Port、主从边界+PML以及辐射边界的单元法计算天线阵列的结果和全阵列计算的结果在主瓣区域内基本一致,可以再定性上分析出阵列的场分布以及电扫描结果。但单元法计算的副瓣及后瓣区域结果与实际全阵列结果相差较大。其中,采用辐射
基于ANSYS-HFSS-软件的WiFi天线设计与优化
引言近代以来移动通信技术迅猛发展,并且越来越普及,Wi-fi 技术是现代无线通信技术的重要组成部分。微带天线由于其剖面低,方向性好,制作可行性高,成本低,可贴合于物体表面以及容易组阵等特点,受到了很广范的青 睐;因此Wi-fi 技术和微带天线技术是近年来研究的热点。ANSYS HFSS 软件
HFSS在天线设计上的应用(二)
4)设置端口激励:天线的馈电点设置在整个天线的中心位置,采用集中端口Lump port,具体设置参考如下。5)设置边界条件:要在HFSS里面分析天线的对外辐射场,需要将边界条件设置为辐射边界,即Radiating only,辐射边界距离辐射体的距离不能小于天线波长的四分之一。如上模型图。6)制定激励
毫米波圆极化介质复合波导缝隙阵列天线的HFSS设计
本文利用ANSYS HFSS设计了一种工作于毫米波段的介质复合波导缝隙天线阵列,在介质覆铜板加工出缝隙并与波导槽复合形成辐射结构,利用HFSS 软件仿真并分析缝隙导纳,泰勒加权实现阵列综合。设计平面和差网络实现天馈系统一体化,利用介质覆铜板加工出圆极化栅,并利用HFSS对整体天线进行了仿真调
HFSS结合UTD计算机载天线方向图
1、引言机载相控阵天线方向图的预测是电磁计算领域的一个带有挑战性的课题。由于机载平台在很多工作频段是电大尺寸的平台,并且考虑到相控阵天线单元众多,因此无法直接用商业软件仿真模拟天线的受扰方向图。而且,限于计算资源,单纯采用有限元法(FEM)、矩量法(MOM)、时域有限差分法(FDTD)等数值计算方法
从有源相控阵天线走向天线阵列微系统-(二)
AiP 是通过封装材料与工艺 , 将天线集成在携带芯片的封装内 . 封装天线技术继承和发扬了微带天线、多芯片电路模块及瓦片式相控阵天线结构的集成概念 , 将天线触角伸向集成电路、封装与新型材料等领域.相比于 AoC, AiP 将多种器件与电路集成在一个封装内 , 完成片上天线难以实
HFSS在手机MIMO天线中的应用
1、前言无线通信正朝着大容量、高传输率和高可靠性的方向发展。近年来,频率资源的严重不足已经成为遏制无线通信发展的瓶颈。多输入多输出(MIMO)技术无需要额外的发射功率和频谱资源,就可以极大地提高无线通信系统的容量,故MIMO技术已经成为当前研究的一个热门课题,是众多方法中很有潜力和优势的一项技术。而
HFSS在天线设计上的应用(三)
2)查看回波损耗S11:回波损耗回波损耗是电缆链路由于阻抗不匹配所产生的反射,是一对线自身的反射,是天线设计需要关注的参数之一。上面的S11图是天线在2G Hz ~3 G Hz频段内的回波损耗,这个贴片偶极子天线中心频率约为2.45G Hz。3)电压驻波比VSWR:电压驻波比VSWR,是指驻波的电压
HFSS在天线设计上的应用(一)
HFSS作为业界第一个商业化的三维全波任意结构电磁场仿真工具,可以为天线及其系统设计提供全面的仿真功能:包括设计、优化及天线的性能评估。HFSS能够精确仿真计算天线的各种电性能,包括二维、三维远场/近场辐射方向图、天线增益、轴比、计划比、半功率波瓣宽度、内部电磁场场型、天线阻抗、电压驻波比、S参数等
HFSS在天线设计上的应用(四)
6)XOZ方向图:方向图是方向性函数的图形表示,它可以形象描绘天线辐射特性随着空间方向坐标的变化关系。辐射特性有辐射强度、场强、相位和极化。通常讨论在远场半径为常数的大球面上,天线辐射(或接收)的功率或者场强随位置方向坐标的变化规律,并分别称为功率方向图和场方向图。天线方向图是在远场区确定的,所以又
5G仿真解决方案-|-相控阵仿真技术详解-(一)
天线是移动通信系统的重要组成部分,随着移动通信技术的发展,天线形态越来越多样化,并且技术也日趋复杂。进入5G时代,大规模MIMO、波束赋形等成为关键技术,促使天线向着有源化、复杂化的方向演进。天线设计方式也需要与时俱进,采用先进的仿真手段应对复杂设计需求,满足5G时代天线不断提高的性能要求。
5G仿真解决方案-|-相控阵仿真技术详解-(二)
但需要注意的是,单元法分析对阵列作了如下假设: 阵列无限大; 每个单元的方向图都完全相同; 阵列所有单元等幅激励,相位等差变化 所以单元法无法考虑阵列的边缘效应,也不能单独设置每个单元的激励,并且无法定义复杂形状的阵列。 全阵精确仿真 以上提到通
利用HFSS仿真设计天线去耦网络
1、天线去耦网络的意义大多数无线系统天线单元的都尽可能的松散排布,其相互之间的间隔足够大,因此天线间的互耦效应较弱。但是在手机等移动终端,由于空间狭窄,天线单元之间间距很小,从而会产生强烈的电磁耦合。研究表明,当天线间的间距小于或等于信号波长的一半时,接收天线上所收到的信号已经明显受到互耦效应的影响
基于特征模理论的系统天线设计方法(二)
由于λn的值变化范围很大,不便于观察,工程上也采用Modal Significance (MS)和特征角Characteristic Angle(CA)表示天线各个模式的谐振情况: (2.6-1)CA=180° -tan-1 λn (2.6-2)由式(2.6-1)可知,MS的取值范围为(0,1
利用HFSS优化法快速确定天线的相位中心
1.什么是天线相位中心天线所辐射出的电磁波在离开天线一定的距离后,其等相位面会近似为一个球面,该球面的球心即为该天线的等效相位中心,如下图(虚线表示该天线的等相位面,在离开天线一定距离后,虚线近似为圆形(最外面一圈),其圆心即为天线的等效相位中心):2.HFSS优化法快速确定天线的相位中心(1)用后
从有源相控阵天线走向天线阵列微系统-(五)
4.4、封装与热管理技术 极大功能化、微纳尺度、多尺度结构、多类型材料 , 以及有源和无源嵌入式厚薄膜元件是实现天线阵列微系统的重要特征 . 随着天线阵列微系统向小型化、高性能和高密度集成的发展 , 多功能器件( 例如 GaN, SoC 芯片 ) 的功耗不断增大 , 芯片散
从有源相控阵天线走向天线阵列微系统-(一)
本文围绕高分辨率对地微波成像雷达对天线高效率、低剖面和轻量化的迫切需求 , 分析研究了有源阵列天线的特点、现状、趋势和瓶颈技术 , 针对对集成电路后摩尔时代的发展预测 , 提出了天线阵列微系统概念、内涵和若干前沿科学技术问题 , 分析讨论了天线阵列微系统所涉及的微纳尺度下多物理场耦
从有源相控阵天线走向天线阵列微系统-(四)
4.2.2、多功能 / 低功耗集成电路技术 在半导体外延材料技术和微波单片集成电路工艺不断进步的推动下 , 微波单片集成电路逐渐向多功能方向发展 , 由于多功能芯片的不同功能电路之间的互连已在内部完成 , 焊点数量大大减少 , 可大幅度缩减芯片体积 , 降低成本 , 提高集成一致性
从有源相控阵天线走向天线阵列微系统-(三)
3.3、天线阵列微系统与常规微系统之间关系 微系统的概念随着相关学科发展、技术推动 , 以及应用需求的牵引 , 其内涵也在不断丰富和发展 . 早期 , 微系统 (microsystem) 概念在欧洲同行中使用 , 在美国被称为 MEMS, 在日本被称为微机械 (micromachi
HFSS15在基片集成波导单脉冲馈电网络仿真中的应用(一)
1、前言Hirokawa和Ando于1998年首先提出了基片集成波导(Substrate Integrated Waveguide,SIW),即在介质基片中制作两排金属化通孔,与上下表面围成准封闭的导波结构。相对于传统的金属波导,SIW体积小、重量轻;同时,相对于微带线等传统电路,SIW损耗
基于毫米波微带天线设计的射频电路实验-(二)
2. 3 天线阵列设计 1) 天线形式确定 上式中,λ 0 为中心频率处的真空波长; f x 和 σ x为波束展宽因子; d 为辐射单元间距; N 为辐射单元数,α m 为最大辐射方向与平面阵元之间的夹角。为满足单元副瓣抑制条件,单元间距 d 必须小于波长λ 0
国外研发出可折叠变形天线阵列
美国普林斯顿大学科研团队研发了一种新型天线阵列。变形阵列被设计成一个被称为水弹(Water Bomb)的折叠纸盒,以创建一个可重构的、适应性强的雷达成像表面。 为了构建该系统,该团队在标准平板上安装了新型宽带超表面天线,然后将许多天线面板连接到一个精确设计的折纸表面。通过适当的顺序折叠和展开面
HFSS求解器应用详解:IE求解器、FEBI求解器(二)
3.给材料赋值及边界条件:HFSS-IE里面支持的边界条件如下图:由上图可以看到,HFSS-IE的边界条件类型比较少,其中Infinite Ground Plane的边界条件必须设置和X-Y平面平行,通过Z Location选项可以调节其在Z轴方向的具体位置。此外,Infinite Grou
基于HFSS的射频微波系统设计仿真平台介绍
一、概述:射频/微波电路是雷达、导航、测控、制导、通信和电子对抗系统的重要组成部分,对系统的性能和可靠性有重要影响。随着小型化要求和系统指标包括发射功率、接收灵敏度、工作带宽、通道一致性的不断提高,对射频微波有源和无源电路提出了更高的要求,进一步加大了设计难度,主要体现在:1)、技术指标高,设计调试
HFSS算法及应用场景介绍(一)
前言相信每一位使用过HFSS的工程师都有一个疑问或者曾经有一个疑问:我怎么才能使用HFSS计算的又快又准?对使用者而言,每个工程师遇到的工程问题不一样,工程经验不能够直接复制;对软件而言,随着HFSS版本的更新,HFSS算法越来越多,针对不同的应用场景对应不同的算法。因此,只有实际工程问题切合合适的
HFSS求解器应用详解:IE求解器、FEBI求解器(一)
在最新的HFSS2015里面,HFSS总共有五种算法求解器,如下图:HFSS-IE求解器综述:HFSS-IE的全称是积分方程法求解器,它是一个基于全波积分方程的电磁场求解器,该求解器采用的是面网格,求解的导体和介质模型表面的电流,由于HFSS-IE不需要另外绘制空气盒子并对其划分网格和计算,因此可以
孔径计算经典计算方法的比较
所谓经典的宏观热力学概念是基于一定的孔填充机理的假设,是与孔内毛细管凝聚现象相关、以Kelvin 方程为基础的方法(如BJH 法)。它们可应用于介孔分布分析,但不适用于微孔填充的描述。经典的微孔处理方法,如DR法和半经验处理方法(如HK 和SF 法)都是基于不同的材料建立模型进而描述微孔填充,不能应