浅谈PCB电磁场求解方法及仿真软件(二)
电磁场求解器分类电子产品设计中,对于不同的结构和要求,可能会用到不同的电磁场求解器。电磁场求解器(Field Solver)以维度来分:2D、2.5D、3D;逼近类型来分:静态、准静态、TEM波和全波。维数类型适合结构应用场合特点2D准静态横截面在长度方向无变化传输线的RLGC低频建模不适应任意结构,高频精度低2D全波横截面在长度方向无变化传输线的RLGC全频建模不适应任意结构2.5D横电磁波TEM多层平面结构电源地平面结构低频建模当结构是3D时,带有寄生效应;当缺少参考面时,高频段结果不准2.5D全波,边界元法,矩量法层叠结构某些片上无源结构,PCB对于边缘效应,3D金属和介质精确建模存在计算时间长,消耗内存大等问题3D准静态低频连接器和封装的低频建模高频误差大,趋肤效应误差大3D全波理论上适合任意结构,只有计算机计算能力足够芯片,封装,电路板,射频微波器件,天线计算时间长,消耗内存大一般建议16G内存以上1、准静电磁算法它需......阅读全文
计算电磁学各种方法比较和电磁仿真软件(一)
计算电磁学中有众多不同的算法,如时域有限差分法(FDTD)、时域有限积分法(FITD)、有限元法(FE)、矩量法(MoM)、边界元法(BEM)、 谱域法(SM)、传输线法(TLM)、模式匹配法(MM)、横向谐振法(TRM)、线方法(ML)和解析法等等。在频域,数值算法有:有限元法(FEM - F
计算电磁学各种方法比较和电磁仿真软件(四)
Sonnet是一种基于矩量法的电磁仿真软件,提供面向3D平面高频电路设计系统以及在微波、毫米波领域和电磁兼容/电磁干扰设计的EDA工具。SonnetTM应用于平面高频电磁场分析,频率从1MHz到几千GHz。主要的应用有:微带匹配网络、微带电路、微带滤波器、带状线电路、带状线滤波器、过孔(层的连接或接
HFSS算法及应用场景介绍(二)
IE算法是三维矩量法积分方程技术,支持三角形网格剖分。IE算法不需要像FEM算法一样定义辐射边界条件,在HFSS中主要用于高效求解电大尺寸、开放结构问题。与HFSS FEM算法一样,支持自适应网格技术,也可以高精度、高效率解决客户问题,同时支持将FEM的场源链接到IE中进行求解。HFSS-I
PCB失效分析案例及方法(一)
一.前言PCB作为各种元器件的载体与电路信号传输的枢纽已经成为电子信息产品的最为重要而关键的部分,广泛的应用于各行各业。近年来,由于PCB失效案例越来越多且部分失效危害极大。2016年4月通过的《装备制造业与标准化和质量提升规划》与《中国制造2025》坚持“创新驱动、质量为先、绿色发展、结构优化、人
PCB失效分析案例及方法(三)
当然,失效类型和模式多种多样,以下是实验室累积的其它典型PCB板级失效分析案例图片:由以上案例,我们不难发现PCB板级失效的模式越来越多,失效根因也各不相同。因此,需要将一般的失效分析思路及方法进行总结提炼,形成一套能够推广应用的方法论,在实际案例的分析中,事半功倍,快速定位根因。三.PCB
【PCB技巧】相同模块布局布线的方法(二)
② 选项:有如下可选项。复制元器件布局:复制元件的布局格式。复制标号&注释格式:对元件的位号和值的格式也进行复制。复制布线的网络:复制走线网络。复制Room尺寸/外形:复制Room的大小/形状。仅复制选中的对象:只复制选择的对象。这个一般不勾选了。③ 通道到通道元器件匹配:选择通道和通道的形
粪便检验及进展浅谈(二)
第二节 大便隐血实验的进展隐血实验是指检查胃肠道隐性出血的一类实验方法。对胃癌和大肠癌等消化道肿瘤,持续的消化道出血可能是其早期出现的唯一特征,且大便隐血检查属无创检查,试验方便、费用低廉,适合进行长期观察,因而大便隐血试验则目前仍旧是早期发现的较好试验。传统的隐血实验是利用血液中RBC的血红蛋白
仪器硬件及测试软件基于计算机仿真技术的应用
随着计算机的运算速度和处理数据能力的不断增加,及计算机仿真技术的广泛应用,仪器的硬件和测试软件及仿真软件的结合越来越紧密。 首先,硬件的模块化设计,使得通过不同的硬件模块组合配以不同的软件,从而形成不同功能的仪器和不同的测试解决方案,如Agilent公司的DAC-J宽带示波器86100
COMSOL5.0版本中射线光学模块介绍(一)
最新发布的COMSOL5.0 版本中,新增了用于电磁模拟的射线光学模块。这个可选的附加模块包括几何光学接口,可用于模拟波长远小于模型最小几何实体时的电磁波传播。几何光学接口包含多种特征和可选设定,并且完全支持多物理场仿真。几何光学、波束包络,或全波电磁场?COMSOL Multiphysics 中有
HFSS算法及应用场景介绍(一)
前言相信每一位使用过HFSS的工程师都有一个疑问或者曾经有一个疑问:我怎么才能使用HFSS计算的又快又准?对使用者而言,每个工程师遇到的工程问题不一样,工程经验不能够直接复制;对软件而言,随着HFSS版本的更新,HFSS算法越来越多,针对不同的应用场景对应不同的算法。因此,只有实际工程问题切合合适的
高速高频电路电磁场仿真:FDTD和FEM算法各有什么优缺点
以下是两位网友的回答,稍微有所调整:RanHe的回答:在讨论电磁仿真前,先要敬仰前辈。计算电磁学从大的方向可以分为两大类:全波仿真算法,高频算法。全波仿真是一种精确算法,但是非常消耗计算资源。一种简单的估算方法是:通常我们对物体要进行剖分,剖分至少要达到0.1个波长。那么也就是说,如果这个物体的电尺
天津大学研发先进射频电磁场优化EDA软件
日前,天津大学微电子学院优智科技学生团队成功研发出拥有完全自主知识产权的智能射频电磁场优化EDA软件。相关成果已授权受理多项国内外发明专利。 EDA全称电子设计自动化,是一种广泛应用于集成电路产业和芯片设计领域的仿真与优化设计工具,被誉为集成电路产业“皇冠上的明珠”。随着人工智能的不断发展,传
天津大学研发先进射频电磁场优化EDA软件
原文地址:http://news.sciencenet.cn/htmlnews/2023/8/507462.shtm日前,天津大学微电子学院优智科技学生团队成功研发出拥有完全自主知识产权的智能射频电磁场优化EDA软件。相关成果已授权受理多项国内外发明专利。EDA全称电子设计自动化,是一种广泛应用于集
变压器振动噪声仿真分析(一)
1 引言随着市场需求严苛程度不断提高,变压器容量增大,其运行稳定性成为了用户关注度极高的问题。变压器性能包括散热、噪声、振动、抗短路能力等众多因素,变压器作为电站主要设备之一,并且是变电站主要噪声源设备是研究的重点,因此变压器的噪声问题一直是设计人员关注的重点。本文中根据GB/T 1094.10
PCB设计宝典分享(二)
PAD and VIA : ≥ 0.3mm(12mil) PAD and PAD : ≥ 0.3mm(12mil) PAD and TRACK : ≥ 0.3mm(12mil) TRACK and TRACK : ≥ 0.3mm(12mil) 密度较高时: PAD and VIA :
如何提高扫频精度?如何扫频方法选择?
为了提高扫频精度,首先要确保自适应求解收敛,然后,可以根据需求和不同扫频方法的特点选择扫频方法,以便得到精确的扫频结果。快速扫频(fast sweep)和插值扫频(interpolating sweep)对扫频的点数不敏感,适应于相对带宽较宽的扫频或多个频点扫频,能够显著缩短仿真时间,求解频
高效的辐射与散射仿真实现方案
有限元法(FEM)作为一种分析和设计工具,已广泛应用于天线、微波和信号完整性等众多电子工程领域。FEM求解器与其它矩量法(MoM)和时域有限差分法(FDTD)等数值方法相比拥有多项显着的优势。这些优势包括:能够处理复杂的非均匀和各向异性材料、能够借助四面体单元准确地描绘复杂几何形状、能够使用高阶基函
PCB压合铜箔起皱工艺改善方法探讨(二)
3.2.1.1.3 1/3OZ铜箔树脂粘流态粘度仍高达3000pa*s以上,其在流动填充间隙时会带动铜箔向无铜区聚集,同时树脂软化-流动的缓冲作用,无铜区分配的压力f及其反作用力f1也在增大,f1作用于铜箔使铜箔向两边延伸。在树脂固化前,铜箔展开速度不能低于聚集速度,否则铜箔会起皱。3.2.1.2
工业仿真软件技术与产业发展趋势分析
工业仿真技术作为工业生产制造中必不可少的首要环节,已经被世界上众多企业广泛地应用到工业各个领域中。随着智能制造、工业4.0和工业互联网等新一轮工业革命的兴起,新技术与传统制造的结合催生了大量新型应用,工业仿真软件也开始结合大数据、虚拟现实、大规模数值模拟等先进技术,在研发设计、生产制造、服务管理和维
浅谈粒度仪软件的校准功能
最近经常有客户询问我们销售人员一个我们很不情愿回答的问题,那就是你们厂家生产的粒度仪软件上有没有数据校准功能。对于这一问题我们技术人员真不知道啊怎么回答才好,如实回答吧某些粒度仪成家可能会自以为我们是针对他们,不如实回答吧我们又不想欺骗客户。斟酌再三我们决定把事实讲清楚,如有不对的地方小编欢迎
浅谈超纯水TOC检测方法(二)
上一篇我们列举了在不同的应用领域不同的TOC检测方法,而实验室纯水、超纯水行业,zui常见的检测方法是什么呢?答案是紫外光氧化法。紫外氧化方法过程如下:进水水流流经*个电导率传感,接着流过UV氧化反应器,水中的有机物被氧化成CO2,再次流经第二个电导率传感,两次电导率的变化即反映水中TOC的含量。其
浅谈超纯水TOC检测方法(二)
上一篇我们列举了在不同的应用领域不同的TOC检测方法,而实验室纯水、超纯水行业,最常见的检测方法是什么呢?答案是紫外光氧化法。 紫外光氧化方法过程如下:进水水流流经第一个电导率传感,接着流过UV氧化反应器,水中的有机物被氧化成CO2,再次流经第二个电导率传感,两次电导率的变化即反映水中TOC的含量。
手动设置HFSS的网格划分规则以提升高速传输线仿真精度1
概述:在传统的高速链路SI仿真中,使用3D电磁场仿真工具仿真传输线往往会产生规模大、效率低、精度差等问题,因此除了过孔、连接器等关键不连续结构外,剩余的长传输线部分通常会使用2D的仿真器代替,该仿真结果在10GHz以下一般可以满足精度要求。但随着链路的传输速率越来越高,特别是当链路速率达到14Gbp
HFSS在天线设计上的应用(一)
HFSS作为业界第一个商业化的三维全波任意结构电磁场仿真工具,可以为天线及其系统设计提供全面的仿真功能:包括设计、优化及天线的性能评估。HFSS能够精确仿真计算天线的各种电性能,包括二维、三维远场/近场辐射方向图、天线增益、轴比、计划比、半功率波瓣宽度、内部电磁场场型、天线阻抗、电压驻波比、S参数等
PCB可制造性设计(二)
背钻孔设计要求背钻可以减少过孔的的等效串联电感,这对高速背板加工非常重要。背钻孔尺寸比PTH孔径大0.3mm,深度控制公差+-0.1mm盘中孔设计要求盘中孔:指焊接焊盘上的导通孔,即起到导通孔的电气性能连接作用,同时不影响到表面焊接。图1为常见BGA设计,过孔打在引线焊盘上;图2即为盘中孔设计,过孔
PCB布局布线规则(二)
4、蛇形线:蛇形线是Layout中经常使用的一类走线方式。其主要目的就是为了调节延时,满足系统时序设计要求。设计者首先要有这样的认识:蛇形线会破坏信号质量,改变传输延时,布线时要尽量避免使用。但实际设计中,为了保证信号有足够的保持时间,或者减小同组信号之间的时间偏移,往往不得不故意进行绕线。注意点:
PCB布局时如何摆放及安装去耦电容(二)
PCB布局时去耦电容摆放 对于电容的安装,首先要提到的就是安装距离。容值最小的电容,有最高的谐振频率,去耦半径最小,因此放在最靠近芯片的位置。容值稍大些的可以距离稍远,最外层放置容值最大的。但是,所有对该芯片去耦的电容都尽量靠近芯片。 下面的图1就是一个摆放位置的例子。本例中的电容等
5G仿真解决方案-|-相控阵仿真技术详解-(二)
但需要注意的是,单元法分析对阵列作了如下假设: 阵列无限大; 每个单元的方向图都完全相同; 阵列所有单元等幅激励,相位等差变化 所以单元法无法考虑阵列的边缘效应,也不能单独设置每个单元的激励,并且无法定义复杂形状的阵列。 全阵精确仿真 以上提到通
HFSS算法及应用场景介绍(三)
混合算法(FEBI,IE-Region,PO-Region,SBR+ Region)前面对频率内的各种算法做了介绍并说明了各种算法应用的场景,很多时候碰到的工程问题既包括复杂结构物理也包括超大尺寸物理,如新能源汽车上的天线布局问题,对仿真而言,最好的精度是用全波算法求解,最快的速度是采用近似算求解,
X 射线荧光制样方法浅谈(二)
一、概论 X 射线荧光光谱法是一个相对分析方法,任何制样过程和步骤必须有非常好的重复操作可能性;用于制作校准曲线的标准样品和分析样品必须经过同样的制样处理过 程。X 射线荧光实际上又是一个表面分析方法,激发只发生在试样的浅表面,必须注意分析面相对于整个样品是否有代表性。此外,样品的平均粒度和粒度分布