光学成像的原理

光学成像原理简介一个成像系统主要包含以下几个要素:·视场:能够在显示器上看到的物体上的部分·分辨率:能够最小分辨的物体上两点间的距离·景深:成像系统能够保持聚焦清晰的最近和最远的距离之差·工作距离:观察物体时,镜头最后一面透镜顶点到被观察物体的距离·畸变:由镜头所引起的光学误差,使得像面上各点的放大倍数不同,导致变形·视差:是由传统镜头引起的,在最佳聚焦点外物体上各点的变化,远心镜头可以解决此题。·图像传感器尺寸:图像传感器(一般是ccd或cmos)有效的工作区域,一般指的是水平尺寸。对所希望的视场来说,这个参数对决定预先放大倍数(pmag)是很重要的。多数图像传感器的长度与宽度之比是4:3,如下图所示。·预放大倍数:是指视场与图像传感器尺寸的比值,这个过程是由镜头来完成的·系统放大倍数:是指显示器上的图像与实际物体大小的比值,也就是整个系统的放大倍数。它也可以写成预放大倍数与电子放大倍数的乘积,而电子放大倍数则是显示器......阅读全文

光学成像的原理

光学成像原理简介一个成像系统主要包含以下几个要素:·视场:能够在显示器上看到的物体上的部分·分辨率:能够最小分辨的物体上两点间的距离·景深:成像系统能够保持聚焦清晰的最近和最远的距离之差·工作距离:观察物体时,镜头最后一面透镜顶点到被观察物体的距离·畸变:由镜头所引起的光学误差,使得像面上各

光学显微镜的成像原理

基本原理在光学显微镜下无法看清小于0.2µm的细微结构,这些结构称为亚显微结构(submicroscopic structures)或超微结构(ultramicroscopic structures;ultrastructures)。要想看清这些结构,就必须选择波长更短的光源,以提高显微镜的分辨率。

光学显微镜的成像原理

光学显微镜的成像研究和设计,是以人眼可见光光线(人们常说的:可见光)的物理现象为基础进行的。光学显微镜的分辨力受可见光波长的限制,质量较好的光学显微镜的分辨极限约为0.2μm。小于光波波长的物体因衍射而不能成像。为了观察到更细微的物体和结构,科学家采用更短波长的电子射线来代替光波,设计出了电子显微镜

光学显微镜的成像原理

光学显微镜的原理光学显微镜主要由目镜、物镜、载物台和反光镜组成。目镜和物镜都是凸透镜,焦距不同。物镜的凸透镜焦距小于目镜的凸透镜的焦距。物镜相当于投影仪的镜头,物体通过物镜成倒立、放大的实像。目镜相当于普通的放大镜,该实像又通过目镜成正立、放大的虚像。经显微镜到人眼的物体都成倒立放大的虚像。反光镜用

光学成像的原理及特点

光学成像是利用折射、反射等手段将物的信息再现。成像是几何光学研究的核心问题之一。实像与虚像、实物与虚物1,物和像都是由一系列的点构成的,物点和像点一一对应。2,实物、实像的意义在于有光线实际发自或通过该点,而虚物、虚像仅仅是由光的直线传播性质给人眼造成的一种错觉,实际上并没有光线经过该点。3,物和像

光学显微镜成像原理

学生用的显微镜是反像,上下左右与实际物体正好相反。物镜放大率乘以目镜放大率就是总放大倍数。

光学显微镜成像原理

  显微镜是由一个透镜或几个透镜的组合构成的一种光学仪器,是人类进入原子时代的标志。主要用于放大微小物体成为人的肉眼所能看到的仪器。光学显微镜成像原理:       光学显微镜主要由目镜、物镜、载物台和反光镜组成。目镜和物镜都是凸透镜,焦距不同。物镜的凸透镜焦距小于目镜的凸透镜的焦距。物镜相当于投影

显微镜光学构件及成像原理

 (一) 折射和折射率   光线在均匀的各向同性介质中,两点之间以直线传播,当通过不同密度介质的透明物体时,则发生折射现象,这是由于光在不同介质的传播速度不同造成的。当与透明物面不垂直的光线由空气射入透明物体(如玻璃)时,光线在其介面改变了方向,并和法线构成折射角。         (二) 透镜的性

光学显微镜成像原理是什么

光学显微镜成像原理是凸透镜成像原理,显微镜有两组镜头,物镜成倒立放大的实像,目镜则将物镜成的像再次成像,只不过成的是放大的虚像,因此经过两次成像后,显微镜下看到的物像是倒立放大的虚像。显微镜下要获得清晰的物像,必需严格按照操作规程进行操作,先降低镜筒,用粗准焦螺旋反方向缓慢上升镜筒的过程中注视目镜,

金相光学显微镜成像的原理是什么?

金相光学显微镜是金属材料试验研究的重要手段之一,主要由光学系统、照明系统、机械系统等组成。其是利用可见光作为照明源,通过玻璃透镜对试样进行放大成像的。成像时来自照明系统的光束经金相试样表面反射后,经过物镜和目镜等一套光学放大系统使试样表面的显微组织放大,并在目镜筒内成像,以供操作人员进行相关观察。 

光学成像与光声成像对比

小动光学活体成像主要采用生物发光(bioluminescence)与荧光(fluorescence)两种技术。生物发光是用荧光素酶(Luciferase)基因标记细胞或DNA,而荧光技术则采用荧光报告基团(GFP、RFP, Cyt及dyes等)进行标记。利用一套非常灵敏的光学检测仪器,让研究

光声成像与近红外光学成像技术原理及应用介绍

光声成像与近红外光学成像的完美结合 1.光声成像结合近红外光学,两种成像模式的融合:近红外超声成像技术的原理:当近红外脉冲激光照射到生物组织上,生物组织吸收光能量而产生热膨胀,在脉冲间隙释放能量发生收缩。伴随着热胀冷缩的过程会产生高频超声波,吸收光能量的多少决定了产生的超声波的强度。因为不同的组织对

光学成像上的对比

传统的光学显微镜与激光共聚焦显微镜在光学成像上的对比,由两者的成像可以很清楚的看出激光共聚焦显微镜在高倍率的成像下的景深高的优势,在1000倍的放大率下,传统的光学显微镜的视场内有很多已经模糊的离焦光信号被采集如图3-1-(a),而激光共聚焦在整个视场内都可以获得质量相当好的图像信号如图3-1-(b

TEM的光学与成像设备

快速的电子开关进行打开、改变和关闭。改变的速度仅仅受到透镜的磁滞效应的影响。电子光学设备        通常,TEM包含有三级透镜。这些透镜包括聚焦透镜、物镜、和投影透镜。聚焦透镜用于将最初的电子束成型,物镜用于将穿过样品的电子束聚焦,使其穿过样品(在扫描透射电子显微镜的扫描模式中,样品上方也有物镜

什么是光学相干成像

  光学相干断层成像术(optical coherence tomography,OCT)是一种能对生物组织浅表微结构进行断层成像的新技术,我们对时域光学相干断层成像术(time domain optical coherence tomography,TDOCT)与傅立叶域光学相干断层成像术(fo

光声成像:-光学和超声成像的完美结合

光声成像: 光学和超声成像的完美结合---Endra小动物光声成像系统在肿瘤,血管,脑科学等领域的应用光声成像是近年来发展起来的一种无损医学成像方法,它结合了纯光学成像的高对比度特性和纯超声成像的高穿透深度特性,可以提供高分辨率和高对比度的组织成像。光声技术的原理是当一束光照射到生物组织上以后,生物

激光扫描共聚焦显微镜光学成像原理

光学成像原理      LSCM 主要基于共轭焦点技术设计而成,即以激光作为光源,采集时使激光光源、被测样品和探测器处于彼此的共轭位置上。基本工作过程为:光源发射出的激光束经挡板上的照明针孔后形成一个点光源,其射出飞光线经双色反射镜发射后,通过显微物镜聚焦到样品上的一点,该点由光源照射激发出荧光,透

「官网」光学成像设备展|2024深圳光学成像设备展

深圳电子元器件展,电子仪器仪表展,深圳电子仪器仪表展,电子元器件展,深圳电子设备展,电子设备展,电子元器件展览会,电子仪器展,深圳电子仪器展,电仪器展览会,深圳继电器展,深圳电容器展,深圳连接器展,深圳集成电路展2024深圳国际电子设备及仪表仪器展览会展览时间:2024年4月9-11日地 点:深圳会

活体光学成像技术之光学活体成像前动物脱毛的必要性

在上几期的文章中,我们分别介绍了荧光成像与生物发光成像的比较、荧光蛋白、荧光染料的挑选方法。当大家选择了合适的标记方法并建立成像模型(药物注射、肿瘤注射等)后,需要对实验动物进行活体成像观察。在成像前,对实验动物进行完全脱毛是非常重要的步骤,直接关系能否获得高质量的成像数据。今天将为大家详细介绍成像

动物活体光学成像的应用进展

随着对亚细胞结构和功能、分子生理和病理、细胞间和细胞内信号通路研究的深入,人类对疾病和对生命本质的认识不断被追朔到蛋白质、基因水平。在上个世纪发展起来的CT、MRI、PFT、超声等宏观影像技术已经远不能满足对活体环境内细微生命过程的探询。组织切片和免疫染色能够部分解释一些生物现象,但是需要研究对象与

活体生物光学成像技术的应用

  作为一项新兴的分子、基因表达的分析检测技术,在体生物光学成像已成功应用于生命科学、生物医学、分子生物学和药物研发等领域,取得了大量研究成果,主要包括: 在体监测肿瘤的生长和转移、基因治疗中的基因表达、机体的生理病理改变过程以及进行药物的筛选和评价等。   1、在体监测肿瘤的生长和转移  

光学随机共振——强大的弱白光成像

  中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室研究员刘红军课题组在光学随机共振弱光图像重构方面取得新进展,于11月4日在美国物理学会(APS)旗下期刊Physical Review Applied 上以White-light image reconstruction via s

组织的光学特性及其成像基础(二)

8.组织的吸收特性 组织的吸收是各个分子成分共同作用的结果。当光子的能量与分子的能级间隔匹配时,分子吸收光子。在短波长区(光子能量大),这些跃迁是电子跃迁。紫外区的重要吸收体包括DNA,芳香族氨基酸(色氨酸、酪氨酸),蛋白质,黑色素和卟啉(包括血红蛋白、肌红蛋白维生素B12以及细胞色素c)。 光穿透

组织的光学特性及其成像基础(一)

生物组织的光学特性,影响着光在组织中的传输,也是医学光谱和成像诊断的基础。影响光在生物组织中传播的三个物理过程是反射和折射(reflection and refraction)、 散射(scattering)、吸收(absorption)。这三个过程分别用以下参数来描述:折射率、 散射系数、吸收系数

光学显微镜的光学原理

显微镜是利用凸透镜的放大成像原理,将人眼不能分辨的微小物体放大到人眼能分辨的尺寸,其主要是增大近处微小物体对眼睛的张角(视角大的物体在视网膜上成像大),用角放大率M表示它们的放大本领。因同一件物体对眼睛的张角与物体离眼睛的距离有关,所以一般规定像离眼睛距离为25厘米(明视距离)处的放大率为仪器的放大

光学显微镜的光学原理

显微镜是利用凸透镜的放大成像原理,将人眼不能分辨的微小物体放大到人眼能分辨的尺寸,其主要是增大近处微小物体对眼睛的张角(视角大的物体在视网膜上成像大),用角放大率M表示它们的放大本领。因同一件物体对眼睛的张角与物体离眼睛的距离有关,所以一般规定像离眼睛距离为25厘米(明视距离)处的放大率为仪器的放大

光学显微镜的光学原理

  显微镜是利用凸透镜的放大成像原理,将人眼不能分辨的微小物体放大到人眼能分辨的尺寸,其主要是增大近处微小物体对眼睛的张角(视角大的物体在视网膜上成像大),用角放大率M表示它们的放大本领。因同一件物体对眼睛的张角与物体离眼睛的距离有关,所以一般规定像离眼睛距离为25厘米(明视距离)处的放大率为仪器的

近场光学的原理

传统的光学理论,如几何光学、物理光学等,通常只研究远离光源或者远离物体的光场分布,一般统称为远场光学。远场光学在原理上存在着一个远场衍射极限,限制了利用远场光学原理进行显微和其它光学应用时的最小分辨尺寸和最小标记尺寸。而近场光学则研究距离光源或物体一个波长范围内的光场分布。在近场光学研究领域,远场衍

电子显微镜光学显微镜成像原理异同点

  电子显微镜是根据电子光学原理,用电子束和电子透镜代替光束和光学透镜,使物质的细微结构在非常高的放大倍数下成像的仪器。  电子显微镜的分辨能力以它所能分辨的相邻两点的最小间距来表示。20世纪70年代,透射式电子显微镜的分辨率约为0.3纳米(人眼的分辨本领约为0.1毫米)。现在电子显微镜最大放大倍率

mri的成像原理

MRI:磁共振成像,英文全称是:Magnetic Resonance Imaging原理核磁共振是一种物理现象,作为一种分析手段广泛应用于物理、化学生物等领域,到1973年才将它用于医学临床检测。为了避免与核医学中放射成像混淆,把它称为磁共振成像术(MR)。MR是一种生物磁自旋成像技术,它是利用原子