超快光纤激光技术:基于多芯光纤的激光系统(一)

基于单芯光纤的激光放大器受限于自聚焦等非线性效应,在功率提升方面遭遇瓶颈。使用大模场面积光纤可以提升放大功率,但较大的模面积会引入高阶模式,在高泵浦功率下出现横模不稳定影响光斑质量。多路激光的相干合成是一种提升光纤单纤芯放大功率上限的方案,可以显著增加输出激光的平均功率,但不足之处在于需要相位反馈系统补偿各路激光间的相位差,装置更加复杂。结构简单且更高功率的光纤激光器与放大器亟待发掘。近几年,研究者对纤芯间距较近、激光会在纤芯之间发生相互作用的耦合多芯光纤产生了兴趣。如图1 所示,多根纤芯安置在同一根光纤中,可以简化多路激光系统的实验光路;各纤芯激光的相互作用会产生超模式,让各路纤芯内的激光保持相位同步,避免使用复杂的反馈系统;理论分析表明某些超模式有望突破单纤芯放大的功率上限,突破光纤激光器的功率瓶颈。2018年,JUNHUA JI等人制作了单根纤芯芯径19 um、数值孔径0.067的大模面积全固态多芯光纤,其......阅读全文

超快光纤激光技术:基于多芯光纤的激光系统(一)

基于单芯光纤的激光放大器受限于自聚焦等非线性效应,在功率提升方面遭遇瓶颈。使用大模场面积光纤可以提升放大功率,但较大的模面积会引入高阶模式,在高泵浦功率下出现横模不稳定影响光斑质量。多路激光的相干合成是一种提升光纤单纤芯放大功率上限的方案,可以显著增加输出激光的平均功率,但不足之处在于需要相位反馈系

超快光纤激光技术:基于多芯光纤的激光系统(二)

研究者首先在无泵浦的情况下测量了优化前各个超模的比例,结果如图6所示,在未优化的情况下,异相模式占比仅为70%,而利用算法补偿了非理想的器件引入的相位扭曲后,可以将异相模式占比提高到90%。实验中只有当参考臂增加260fs的时间延迟时才出现另一个超模式的干涉图样,略大于种子脉冲的变换极限脉宽(220

超快光纤激光技术之七:基于四阶色散的超快光纤激光

孤子激光器通过平衡二阶色散和非线性可以直接产生亚10fs的脉冲,并且装置相对简单。然而,受限于孤子面积理论,孤子能量无法进一步提升。为了克服这个限制,需要激发带啁啾的脉冲,但后续的压缩使光路更加复杂同时效率也将降低。因此,为了保留孤子激光器的简单和高效性,需要新的方法克服孤子激光器的功率提升

浅析基于四阶色散的超快光纤激光(一)

孤子激光器通过平衡二阶色散和非线性可以直接产生亚10fs的脉冲,并且装置相对简单。然而,受限于孤子面积理论,孤子能量无法进一步提升。为了克服这个限制,需要激发带啁啾的脉冲,但后续的压缩使光路更加复杂同时效率也将降低。因此,为了保留孤子激光器的简单和高效性,需要新的方法克服孤子激光器的功率提升局限性。

超快非线性光学技术:多芯光纤中的超连续产生(一)

多芯光纤是一种新型光纤,这种光纤的包层中存在距离较近的多根纤芯,纤芯之间可产生较强的耦合,从而使各个纤芯内的光场成为一个整体,可用于光放大、脉冲压缩、超连续产生、光场调制、光子弹产生等过程。正六边形7芯光纤(横截面如图1),作为最常见的多芯光纤之一,可用于超连续产生[1],本篇文章通过数值模拟的方式

浅析基于四阶色散的超快光纤激光(二)

考虑到纯四次孤子和常规孤子物理的相似性,同年,Runge等人理论上研究了脉冲在包含正四阶色散和增益的介质中的自相似传播[2]。在四阶正色散情况下,脉冲向新的渐进解演化,其时域和频域曲线与二阶色散情况下显著不同。理论结果表明,随着传输距离增加,脉冲保持其形状不变,强度与T^{4/3}成正比,瞬时频率和

超快非线性光学技术:多芯光纤中的超连续产生(二)

(3)当纤芯距离适中时(芯距15.5μm,如图5),纤芯与纤芯的耦合强度足够,模式A和模式F可在早期被激发出来,且不会因为较大的群速度差异而分离。这使得模式A和模式F能在时间上重合在一起,为模式间的能量转换提供可能。当处于模式F的频率1和处于模式A的频率2恰好群速度相同且相差13.2THz时,模式F

新型激光器实现超快、超稳拉曼光纤激光输出

  近期,上海光机所冯衍研究员课题组,在脉冲拉曼光纤激光器研究中取得系列进展。课题组采用放大自发辐射源作为泵浦,实现了超稳定的锁模拉曼光纤激光输出;采用脉冲激光泵浦,实现了超快随机分布式反馈拉曼光纤激光输出;基于脉冲泵浦窄线宽拉曼光纤放大器,研制成功拉莫尔重频的589nm脉冲黄光激光器,提高钠导星亮

超快非线性光学技术之八:多芯光纤中的超连续产生2

图5 中等耦合内芯激发脉冲演化图若以光谱的加权标准差作为超连续产生光谱宽度的度量,则不同功率和芯距下内芯激发的光谱宽度如图6所示。图6 内芯激发光谱宽度随功率和芯距的变化与以上结果对比,作者还讨论了当初始脉冲(脉冲宽度为100fs,功率15kW,中心波长1.55μm)输入到外芯(也就是图2(a)中的

超快非线性光学技术之八:多芯光纤中的超连续产生1

多芯光纤是一种新型光纤,这种光纤的包层中存在距离较近的多根纤芯,纤芯之间可产生较强的耦合,从而使各个纤芯内的光场成为一个整体,可用于光放大、脉冲压缩、超连续产生、光场调制、光子弹产生等过程。正六边形7芯光纤(横截面如图1),作为最常见的多芯光纤之一,可用于超连续产生[1],本篇文章通过数值模拟的方式

光纤激光器件的新焦点——3C手性耦合纤芯光纤(一)

近两年,3C手性耦合芯光纤被越来越多的提及,频繁地出现在各类期刊文章当中,成为光纤激光器件家族中被重点关注的对象。为什么与双包层、三包层光纤相比,3C光纤会同样备受关注?是什么样的波导结构赋予之怎样的光学特性?今天咱们就一起来认识和了解一下3C手性耦合芯光纤。手性介质与手性波导手性(Chiralit

基于266-nm-DUV辐射源的高功率,高重复率-超快光纤激光器

  高功率、超快速、高重复率的深紫外(DUV)相干辐射由于其在超快时间分辨测量、激光烧蚀、光刻和生物医学等方面的广泛应用而存在巨大的需求。近日,来自印度物理研究实验室的科研团队报导了一种获得紧凑、高功率、高重复率和超快速的深紫外(DUV)辐射源的方法。在该方法中,使用1064 nm的Yb光纤激光器以

光纤激光器件的新焦点——3C手性耦合纤芯光纤(二)

在 2009 年以双包层掺镱3C光纤搭建放大系统来探究其放大特性[10]。该实验得到了 250 W 的连续功率输出和150W输出脉冲 10 ns,脉冲能量达到0.6mJ,峰值功率60kW,放大斜率效率达到 74%。同样,在所有功率水平下,系统输出光斑均为单模。2010 年,该团队将3C光纤应用于主振

超快光纤激光技术之五:如何提高横模不稳定性(TMI)...

超快光纤激光技术之五:如何提高横模不稳定性(TMI)的阈值我们在超快光纤激光技术之四中已经知道,TMI导致光束波动需要满足两个条件: (1)出现瞬态折射率光栅(RIG)和 (2) 模间干涉图样MIP与RIG之间存在相移。因此,可以通过削弱RIG或者控制MIP-RIG相移以提高TMI阈值,具体

新型的光纤激光器技术简介

早期对激光器的研制主要集中在研究短脉冲的输出和可调谐波长范围的扩展方面。今天,密集波分复用(DWDM)和光时分复用技术的飞速发展及日益进步加速和刺激着多波长光纤激光器技术、超连续光纤激光器等的进步。同时,多波长光纤激光器和超连续光纤激光器的出现,则为低成本地实现Tb/s的DWDM或OTDM传输提供理

新型的光纤激光器技术简介

早期对激光器的研制主要集中在研究短脉冲的输出和可调谐波长范围的扩展方面。今天,密集波分复用(DWDM)和光时分复用技术的飞速发展及日益进步加速和刺激着多波长光纤激光器技术、超连续光纤激光器等的进步。同时,多波长光纤激光器和超连续光纤激光器的出现,则为低成本地实现Tb/s的DWDM或OTDM传输提供理

光纤激光器的技术优势

光纤激光器作为第三代激光技术的代表,具有以下优势: (1)玻璃光纤制造成本低、技术成熟及其光纤的可饶性所带来的小型化、集约化优势。 (2)玻璃光纤对入射泵浦光不需要像晶体那样的严格的相位匹配,这是由于玻璃基质Stark 分裂引起的非均匀展宽造成吸收带较宽的缘故。 (3)玻璃材料具有极低的体积面积比,

fLaser-光纤激光器

fLaser 光纤激光器        针对光纤光谱仪开发 / 小功率 & 高稳定 / 荧光 & 拉曼专用               fLaser 光纤激光器 针对光纤光谱系统开发,默认 50 / 100μm 芯径光纤输出,已满足多数实验需要。同时,fLaser 提供 3 种常见 Rama

光纤激光器的原理

光纤激光器是指用掺稀土元素玻璃光纤作为增益介质的激光器,光纤激光器可在光纤放大器的基础上开发出来:在泵浦光的作用下光纤内极易形成高功率密度,造成激光工作物质的激光能级“粒子数反转”,当适当加入正反馈回路(构成谐振腔)便可形成激光振荡输出。

基于石英光纤的高功率拉曼光纤激光器中的极端频移研究

  近日,国防科技大学的Jiaxin Song等人通过实验研究了高功率拉曼光纤激光器中的极端频移。该拉曼光纤激光器的研制是利用一对固定匹配的中心波长(1120纳米)的光纤布拉格光栅与一段31米长的保偏无源光纤来作为拉曼增益介质。  该激光器的泵浦源是国产的高功率、线偏振、波长可调的主振荡功率放大器源

基于光纤OPCPA的高能量1300-nm/1700-nm超快光源

波长为1300 nm和1700 nm的激光光源在工业焊接和生物医学等领域有着潜在的应用前景。在工业焊接方面,由于烃键对1700 nm波段的高吸收率,该波长激光光源可用于某些聚合物和塑料的焊接;在生物医学方面,生物组织在1300 nm和1700 nm处具有相对较低的水吸收和较长的散

介绍光纤激光器的特点

  产品特点  1. 激光切割FPC的优点  2. 激光在挠性电路板制造过程中有三个主要功能:FPC外型切割,覆盖膜开窗,钻孔等;  3.直接根据CAD 数据用来激光切割,更方便快捷,可以大幅度缩短交货周期;  4.不因形状复杂、路径曲折而增加加工难度;  5.进行覆盖膜开窗口时,切割出的覆盖膜轮廓

光纤激光器的相关介绍

  采用光纤激光器的机器占地小,激光光源和冷却系统体积也更小;没有激光气体管线,也不需要调校镜片。而功率为2kw或3kw的光纤激光光源只需要4kw或6kw CO2激光光源能耗的50%就能达到相同的性能,并且速度更快、能耗更低、对环境造成的影响更少。  光纤激光器采用固态二极管来泵浦双包层掺镱光纤内的

光纤激光器的工作原理

光纤激光器的工作原理如下:由泵浦源发出的泵浦光通过一面反射镜耦合进入增益介质中,由于增益介质为掺稀土元素光纤,因此泵浦光被吸收,吸收了光子能量的稀土离子发生能级跃迁并实现粒子数反转,反转后的粒子经过谐振腔,由激发态跃迁回基态,释放能量,并形成稳定的激光输出。光纤激光器的工作原理主要基于光纤激光器的特

光纤激光器的主要类型

按照光纤材料的种类,光纤激光器可分为:1.晶体光纤激光器。工作物质是激光晶体光纤,主要有红宝石单晶光纤激光器和nd3+:YAG单晶光纤激光器等。2.非线性光学型光纤激光器。主要有受激喇曼散射光纤激光器和受激布里渊散射光纤激光器。 3.稀土类掺杂光纤激光器。光纤的基质材料是玻璃,向光纤中掺杂稀土类元素

光纤激光器的应用介绍

1.标刻应用脉冲光纤激光器以其优良的光束质量,可靠性,最长的免维护时间,最高的整体电光转换效率,脉冲重复频率,最小的体积,无须水冷的最简单、最灵活的使用方式,最低的运行费用使其成为在高速、高精度激光标刻方面的唯一选择。 一套光纤激光打标系统可以由一个或两个功率为25W的光纤激光器,一个或两个用来导光

光纤激光器都有哪些参数

脉冲的有:平均功率,峰值功率,脉冲宽度,重复频率,脉冲能量,线宽,光束质量(SM/PM)连续的有:功率,线宽,光束质量(SM/PM)现在普遍应用在工业加工(打标,切割,焊接,熔覆等等)以及激光雷达上。

超连续光纤激光器——STED-显微成像最理想的光源

众所周知,受激发射损耗(STED)荧光成橡技术是一种可以突破衍射极限的强大显微技术。最近,德国MaxPlanck 研究所纳米光子生物分部的DominikWildanger 和他的同事们利用单台超连续光纤激光器对密集纳米颗粒和哺乳动物细胞的微管网成像,在焦平面上取得了空间精度达30-50nm,

光纤传输激光焊接机的特点

  光纤传输激光焊接机选配CCD摄像监视系统,方便观察和精确定位。   光纤传输激光焊接机焊斑能量分布均匀,具有焊接特性所需要的最佳光斑。   光纤传输激光焊接机适应各种复杂焊缝,各种器件的点焊,以及1mm以内薄板的缝焊。   光纤传输激光焊接机采用英国进口陶瓷聚光腔体,耐腐蚀、耐高温,腔体

光纤激光器目前研究进展

2002年南开大学报道了在掺Yb3 + 双包层光纤器中得到了脉宽4. 8ns 的自调Q 脉冲输出和混合调Q 双包层光纤激光中得到峰值功率大于8kW ,脉宽小于2ns 的脉冲输出。2003年南开大学报道了利用脉冲泵浦获得100kW 峰值功率的调Q 脉冲,以及得到的60nm 可调谐的调Q 脉冲。 200