大视场超光谱成像差分吸收光谱仪光谱定标装置

内容说明本发明涉及环境监测领域,具体是一种大视场超光谱成像差分吸收光谱仪光谱定标装置。发明背景大视场超光谱成像差分吸收光谱仪通过测量大气、地表的紫外、可见散射光谱、并利用痕量气体在紫外、可见波段的“指纹”吸收、采用差分吸收光谱算法获取大气痕量气体浓度。该载荷采用面阵探测器推扫方式工作,拥有114度大视场,在轨道705km时地面幅宽可达2600km。载荷获取紫外、可见波段的光谱信息,其光谱定标精度决定着载荷最终的数据反演精度。目前采用元素灯与转台相结合的方式进行光谱定标。现定标装置存在的主要问题为:1、定标所需时间较长。目前的装置一次扫描约覆盖0 .5度视场,如需完成114度视场,需进行228次测试。2、大视场旋转会造成入瞳光线偏移,给定标带来偏差。发明内容本发明的目的是提供一种大视场超光谱成像差分吸收光谱仪光谱定标装置,以解决现有技术存在的问题。为了达到上述目的,本发明所采用的技术方案为:大视场超光谱成像差分吸收光谱仪光谱定标装......阅读全文

紫外临边成像光谱仪:探测大气层的“天眼”

  人眼看到的大气是透明的,我们看不到大气的变化,更看不到有多少有害气体如妖魔鬼怪般潜伏在大气层中伺机而动。  天宫二号有一对“天眼”,不仅能看到人眼所能看到的可见光,更将视野扩展到人眼所不能及的紫外光。在“天眼”的注视下,大气中的一切都无所遁形。   紫外临边成像光谱仪的“环形天眼”  紫外临边成

宽谱太赫兹成像光谱仪(高至20THz)

宽频谱太赫兹成像光谱模块(最高可达20 THz)宽频谱太赫兹成像仪(高达20 THz),可灵活配置飞秒激光源!瑞士Rainbow Photonics 公司推出TeraIMAGE宽频谱太赫兹成像光谱模块产品,为实验室太赫兹时域光谱及成像等科研应用提供了灵活的解决方案。 TeraIMAGE太赫兹

航天科技研发四维成像光谱仪-助力遥感领域

  近日,中国航天科技集团公司五院508所新型四维光谱成像技术团队,开展了四维成像光谱仪成像实验并取得成功,试验验证了该光谱仪在四维光谱成像获取方面的能力,为快照式高光谱视频领域再添一新设备,弥补了国内高速目标动态捕捉产品领域的空白。  据悉,四维光谱成像技术是一项革命性新型成像技术。四维成像光谱仪

直读光谱仪—发射光谱仪

  管他叫直读的原因是相对于摄谱仪和早期的发射光谱仪而言,由于在70年代以前还没有计算机采用,所有的光电转换出来的电流信号都用数码管读数,然后在对数转换纸上绘出曲线并求出含量值,计算机技术在光谱仪应用后,所有的数据处理全部由计算机完成,可以直接换算出含量,所以比较形象的管它叫直接可以读出结果,简称就

赛默飞分子光谱又添新成员——DXRxi显微拉曼成像光谱仪

  2014年2月26日上午,2014赛默飞世尔科技分子光谱新品发布会在上海科学会堂举行,隆重推出拉曼光谱新产品——DXRxi显微拉曼成像光谱仪。赛默飞世尔科技

西安光机所研制出干涉成像光谱仪的平场方法

  干涉成像光谱仪输出的图像信息是干涉条纹,其不同于一般照相机。因此,普通照相机的平场原理与方法不适用于干涉成像光谱仪。目前,修正CCD探测器与电子学部分像元间响应不一致性的方法,其修正的全面性及效果相对较差。尤其是当光学系统具有较大视场甚至有渐晕时,缺点更为突出。   针对这一难题

宽谱太赫兹成像光谱仪(高至20THz)参数

 指标参数TeraIMAGETHz generator/detectorOrganic crystalSpectral range 1-14 THz (with ~50fs pump laser)Best phase matchable wavelength1300-1600 nmScaning r

宽谱太赫兹成像光谱仪(高至20THz)特点

主要特点:基于有机晶体产生,探测太赫兹频谱高达14THz(可定制)成像扫描范围:50x50 m m2可选项:扫描范围 100x100 m m2,包含泵浦激光源主要应用:危险品,生物医学样品的成像塑料,特殊聚合物及半导体检测

实验室光谱仪器傅里叶变换红外显微成像的结构

大多数红外显微成像都是通过将红外显微镜与FTIR光谱仪联用实现的。该装置主要包括三个部分:干涉仪系统、红外显微光学系统以及多通道检测器,典型的红外显微成像系统如图1所示。目前大多数红外成像系统都和傅里叶变换红外光谱仪主机相连,依靠红外光谱仪的干涉系统提供红外干涉光,在一些更新的成像仪器中已将红外光学

成像光谱方法技术

一方面,高光谱分辨率的成像光谱遥感技术是对多光谱遥感技术的继承、发展和创新,因此,绝大部分多光谱遥感数据处理分析方法,仍然可用于高光谱数据;另一方面,成像光谱技术具有与多光谱技术不一样的技术特点,即高光谱分辨率、超多波段(波段<1000,通常为100~200个左右)和甚高光谱(Ultra Spect

经典光谱仪和新型光谱仪的简介

  一、经典光谱仪  经典光谱仪是以空间色散原理上所建立的仪器,经典光谱仪是相逢光谱器,调制管沟一是非空间分光的,它采用圆孔进光。  二、新型光谱仪  新型光谱仪实在调制原理上所建立的仪器。  其实,光谱仪可以应用的范围很广,在农业、天文、汽车、生物、化学、镀膜、色度计量、环境检测、薄膜工业、食品、

直读光谱仪和普通光谱仪的区别

直读光谱仪:适合于户外名种应用,不管是用于压力容器内部分析、管道原位分析还是工场分析都没有任何问题。广泛应用于铸造,钢铁,金属回收和冶炼以及军工、航天航空、电力、化工、高等院校和商检,质检等单位普通光谱仪:通过光谱仪对光信息的抓取、或电脑化自动显示数值仪器的显示和分析,从而测知物品中含有何种元素。光

直读光谱仪和普通光谱仪的区别

直读光谱仪:适合于户外名种应用,不管是用于压力容器内部分析、管道原位分析还是工场分析都没有任何问题。广泛应用于铸造,钢铁,金属回收和冶炼以及军工、航天航空、电力、化工、高等院校和商检,质检等单位普通光谱仪:通过光谱仪对光信息的抓取、或电脑化自动显示数值仪器的显示和分析,从而测知物品中含有何种元素。光

直读光谱仪和普通光谱仪的区别

直读光谱仪:适合于户外名种应用,不管是用于压力容器内部分析、管道原位分析还是工场分析都没有任何问题。广泛应用于铸造,钢铁,金属回收和冶炼以及军工、航天航空、电力、化工、高等院校和商检,质检等单位普通光谱仪:通过光谱仪对光信息的抓取、或电脑化自动显示数值仪器的显示和分析,从而测知物品中含有何种元素。光

直读光谱仪和普通光谱仪的区别

直读光谱仪:适合于户外名种应用,不管是用于压力容器内部分析、管道原位分析还是工场分析都没有任何问题。广泛应用于铸造,钢铁,金属回收和冶炼以及军工、航天航空、电力、化工、高等院校和商检,质检等单位普通光谱仪:通过光谱仪对光信息的抓取、或电脑化自动显示数值仪器的显示和分析,从而测知物品中含有何种元素。光

光电直读光谱仪和火花直读光谱仪

其实说的是同一类仪器,只是命名出发点不同。1. 光电的意思就是通过光电转换的原理采集每个元素所发出的不同谱线,根据强度及波长确定含量的元素性质。2. 火花的意思是从对激发来考虑的,要分析各个元素的谱线,那么谱线哪里产生呢,就是通过电火花对金属表面进行激发才产生,因为能量跃迁的原理,每个元素才会发出相

FluorCam多光谱荧光成像技术应用案例—多光谱荧光成像...

FluorCam多光谱荧光成像技术应用案例—多光谱荧光成像是什么1. 多光谱荧光的发现及特性二十世纪八九十年代,植物生理学家对植物活体荧光——主要是叶绿素荧光研究不断深入。激发叶绿素荧光主要是使用红光、蓝光或绿光等可见光。当科学家使用UV紫外光对植物叶片进行激发,发现植物产生了具备4个特征性波峰的荧

光学精密工程-|-轻小型高分辨率星载高光谱成像光谱仪

  摘 要  在小型化成像光谱仪的研制和应用中,如何同时实现轻量化、高地面分辨率和高信噪比是目前亟待突破的技术难题。本文通过将线性渐变滤光片分光技术和数字域时间延迟积分技术相结合,并对镜头进行紧凑化处理,设计了一款工作波段为403~988 nm、平均光谱分辨率为8.9 nm、系统总质量为7 kg的轻

定标光谱仪和海岸带成像仪-海洋观测迈入新征程

   伴随着长征二号丙运载火箭的轰鸣,海洋一号C卫星7日在太原卫星发射中心成功发射。记者从中国航天科技集团有限公司第五研究院(以下简称航天五院)了解到,这颗卫星上搭载了由该院新研制的星上定标光谱仪和海岸带成像仪,将填补我国同平台高精度交叉定标技术的空白,提升我国海洋卫星观测数据精准度,助力我国海洋观

hyspex无人机载成像光谱仪的4大创新成果分析

  hyspex无人机载成像光谱仪通过分析光谱成像数据,就可以从分析出图中物体的类型。这种技术对于环境监测,军事探查,农业监测,资源勘探都有很大的作用。该仪器采用了透射型体相全息衍射光栅,其在可见光到近红外波段具有低杂散光、低吸收率特点,由于核心部分密封在玻璃或其它透明材质中,因此寿命长、容易清洁、

光谱仪知识等离子体光谱仪与直读光谱仪的区别

直读光谱仪和电感耦合等离子体发射光谱仪都属于原子发射光谱仪器,而且都是目前常用的分析仪器,但是这两种仪器还是有很大的区别的,虽然在原理、仪器设计上有很多相通之处。  关于电感耦合等离子体光谱仪和光电直读光谱仪的区别,主要有以下几点。  1、直读光谱仪主要应用在冶金方面,而ICP光谱仪几乎可以应用于各

微型光谱仪(光纤光谱仪)技术及应用

摘要:微型光谱仪(光纤光谱仪)具体小型模块化和高速采集的特点,在系统集成和现场检测的场合得到了广泛的应用。本文以海洋光学的微型光谱仪为例,介绍其结构和特点,并且详细介绍了其在检测领域中的应用方案。1  引言光谱仪器是应用光学技术、电子技术及计算机技术对物质的成分及结构等进行分析和测量的基本设备,广泛

光谱仪日常维护和光谱仪的故障

  光谱分析法也存在不足之处,它是一种经验相对的分析方法:其试样组成、结构状态、激发条件等难以完全控制,需用一套相应的标准样品进行匹配;同时受环境及仪器本身的影响较大,对其精确度造成一定影响。这就需要特别注意做好平时的管理维护工作,使仪器保持良好的状态。经过长时间的实践摸索,我们总结出了以下行之有效

直读光谱仪和原子吸收光谱仪区别

1. 直读光谱仪可测试固体金属材料,原子吸收需要将固体样品处理成溶液后,才能分析。2. 光电直读光谱仪为发射光谱仪,主要通过测量样品被激发时发出代表各元素的特征光谱光(发射光谱)的强度而对样品进行定量(半定量)分析的仪器。是最原始的平面光栅摄谱仪技术革新而来的主要通过测量代表各元素的特征谱线

紫外光谱仪与红外光谱仪

 紫外光谱仪是物质中分子吸收200-800nm光谱区内的光而产生的。这种分子吸收光谱产生于价电子和分子轨道上的电子在电子能级跃迁原子或分子中的电子,总是处在某一种运动状态之中。每一种状态都具有一定的能量,属于一定的能级。这些电子由于各种原因如受光、热、电的激发而从一个能级转到另一个能级,称为跃迁。当

高光谱成像原理

高光谱成像是一种遥感技术,它可以通过获取地物的高光谱图像来实现物质识别、分类和定量分析等目标。高光谱成像技术的原理是基于地物物质吸收、反射和辐射特性的不同而实现的。高光谱成像技术的原理主要包括以下几个方面:一、光谱分辨率高光谱成像技术采用的是光谱分辨率比较高的成像仪器,它能够获取较高的空间分辨率和光

超光谱成像技术

  超光谱成像技术是在多光谱成像技术基础上发展起来的新技术。它是一种集光学、光谱学、精密机械、电子技术及计算机技术于一体的新型遥感技术,能获得空间维和光谱维的丰富信息,属于当前可见红外遥感器的前沿科学。由其物化的成像光谱仪,根据光谱分辨率(光学遥感器的性能指标之一,是指遥感器在接收目标辐射的光谱时,

成像光谱技术是什么?

1.成像光谱技术发展简述  光谱技术是指利用光与物质的相互作用研究分子结构及动态特性的学科,即通过获取光的发射、吸收与散射信息可获得与样品相关的化学信息,成像技术则是获取目标的影像信息,研究目标的空间特性信息。这两个独立的学科在各自的领域里已有数百年的发展历史,但是知道上个世纪六十年代,遥

高光谱图像成像原理

  光源相机(成像光谱仪+ccd)装备有图像采集卡的计算机是高光谱成像技术的硬件组成,其光谱的覆盖范围为200-400nm,400-1000nm,900-1700nm,1000-2500nm。其中光谱相机的主要组成部分为准直镜,光栅光谱仪,聚焦透镜以及面阵ccd。  其扫描过程是当ccd探测器在光学

光谱仪简介

  光谱仪( Spectroscope)是将成分复杂的光分解为光谱线的科学仪器,由棱镜或衍射光栅等构成,利用光谱仪可测量物体表面反射的光线。阳光中的七色光是肉眼能分的部分(可见光),但若通过光谱仪将阳光分解,按波长排列,可见光只占光谱中很小的范围,其余都是肉眼无法分辨的光谱,如红外线、微波、紫外线、