全面详解射频技术原理电路及设计电路(一)
射频(RF)技术—基本介绍 RF(Radio Frequency)技术被广泛应用于多种领域,如:电视、广播、移动电话、雷达、自动识别系统等。专用词RFID(射频识别)即指应用射频识别信号对目标物进行识别。RFID的应用包括: ● ETC(电子收费) ● 铁路机车车辆识别与跟踪 ● 集装箱识别 ● 贵重物品的识别、认证及跟踪 ● 商业零售、医疗保健、后勤服务等的目标物管理 ● 出入门禁管理 ● 动物识别、跟踪 ● 车辆自动锁死(防盗) RF(射频)专指具有一定波长可用于无线电通信的电磁波。电磁波可由其频率表述为:KHz(千赫),MHz(兆赫)及GHz(千兆赫)。其频率范围为VLF(极低频)也即10-30KHz至EHF(极高频)也即30-300GHz。 RFID是一项易于操控,简单实用且特别适合用于自动化控制的灵活性应用技术,其所具备的独特优越性是其它识别技术无法企及的。它既可支持只读工作模式也可支持读写工作模......阅读全文
全面详解射频技术原理电路及设计电路(一)
射频(RF)技术—基本介绍 RF(Radio Frequency)技术被广泛应用于多种领域,如:电视、广播、移动电话、雷达、自动识别系统等。专用词RFID(射频识别)即指应用射频识别信号对目标物进行识别。RFID的应用包括: ● ETC(电子收费) ● 铁路机车车辆识别与跟踪 ● 集装箱识别
全面详解电源电路(一)
一、开关电源的电路组成 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM 控制器电路、输出整流滤波电路组成。辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。开关电源的电路组成方框图如下:二、输入电路的原理及常见电路1、AC
射频芯片工作原理、射频电路分析-(一)
一部可支持打电话、发短信、网络服务、APP应用的手机,通常包含五个部分:射频、基带、电源管理、外设、软件。 射频:一般是信息发送和接收的部分; 基带:一般是信息处理的部分; 电源管理:一般是节电的部分,由于手机是能源有限的设备,所以电源管理十分重要; 外设:一般包括LC
全面详解电源电路(二)
五、稳压环路原理1、反馈电路原理图:2、工作原理:当输出 U0 升高,经取样电阻 R7、R8、R10、VR1 分压后,U1③脚电压升高,当其超过 U1②脚基准电压后 U1①脚输出高电平,使 Q1 导通,光耦 OT1 发光二极管发光,光电三极管导通,UC3842①脚电位相应变低,从而改
射频电路设计常见问题盘点(一)
在实际设计时,真正实用的技巧是当这些准则和法则因各种设计约束而无法准确地实施时如何对它们进行折衷处理。 当然,有许多重要的 RF 设计课题值得讨论,包括阻抗和阻抗匹配、绝缘层材料和层叠板以及波长和驻波等,在全面掌握各类设计原则前提下的仔细规划是一次性成功设计的保证。
射频典型电路讲解及分析(一)
随着电路集成技术日新月异的发展,射频电路也趋向于集成化、模块化,这对于小型化移动终端的开发、应用是特别有利的。 目前手机的射频电路是以 RFIC 为中心结合外围辅助、控制电路构成的。 射频电路中各典型功能模块的分析是我们讨论的主要内容。 Outline 收发器(Transce
射频芯片工作原理、射频电路分析-(二)
3)滤波器: 结构:手机中有高频滤波器、中频滤波器。 作用:滤除其他无用信号,得到纯正接收信号。后期新型手机都为零中频手机;因此,手机中再没有中频滤波器。 4)高放管(高频放大管、低噪声放大器): 结构:手机中高放管有两个:900M高放管、180
模拟电路和数字电路PCB设计的区别详解
工程领域中的数字设计人员和数字电路板设计专家在不断增加,这反映了行业的发展趋势。尽管对数字设计的重视带来了电子产品的重大发展,但仍然存在,而且还会一直存在一部分与模拟或现实环境接口的电路设计。模拟和数字领域的布线策略有一些类似之处,但要获得更好的结果时,由于其布线策略不同,简单电路布线设
RF无线射频电路设计中的常见问题及设计原则(一)
1. 引言 射频(RF)PCB设计,在目前公开出版的理论上具有很多不确定性,常被形容为一种“黑色艺术”。通常情况下,对于微波以下频段的电路(包括低频和低频数字电路),在全面掌握各类设计原则前提下的仔细规划是一次性成功设计的保证。对于微波以上频段和高频的PC类数字电路。则需要2~3个版本
三极管开关电路图原理及设计详解-(一)
晶体管开关电路(工作在饱和态)在现代电路设计应用中屡见不鲜,经典的74LS,74ALS等集成电路内部都使用了晶体管开关电路,只是驱动能力一般而已。TTL晶体管开关电路按驱动能力分为小信号开关电路和功率开关电路;按晶体管连接方式分为发射极接地(PNP晶体管发射极接电源)和射级跟随开关电路。发射
无线产品射频电路设计的科学方法(一)
从20世纪80年代开始,射频微波电路技术的应用方向逐渐由传统波导同轴器件转移到微波平面PCB电路方面,微波平面电路设计一直是一项比较复杂的工作。现在的无线通信产品已经从早期的2G,逐步发展到3G、4G乃至5G。随着应用频率的逐步走高,再加上多频段电路并存与产品小型化要求等,射频电路的设计越来越难,传
射频和数字电路设计的区别
射频电路: 1.关注阻抗匹配或功率,这是设计中最为关键的两个参数,其他中间参数都可以由功率和阻抗来确定; 2.关注频率响应,通常在频域内进行分析,因为对于射频电路模块而言,带宽范围很重要; 3.喜欢用网络分析仪、频谱分析哎仪或噪声测试仪等进行测试,这些仪器输入/输出阻抗低,一般都是
射频电路设计常见问题盘点(三)
此外,将并行 RF 走线之间的距离减到最小可以将感性耦合减到最小。一个实心的整块接地面直接放在表层下第一层时,隔离效果最好,尽管小心一点设计时其它的做法也管用。 在 PCB 板的每一层,应布上尽可能多的地,并把它们连到主地面。尽可能把走线靠在一起以增加内部信号层和电源分配层的地块
射频电路设计常见问题盘点(二)
2)RF 与 IF 走线应尽可能走十字交叉,并尽可能在它们之间隔一块地: 正确的 RF 路径对整块 PCB 板的性能而言非常重要,这也就是为什么元器件布局通常在手机 PCB 板设计中占大部分时间的原因。 在手机 PCB 板设计上,通常可以将低噪音放大器电路放在 PC
射频典型电路讲解及分析(三)
功率耦合器(Power Coupler) 为了达到功率控制,我们需要使用到的功率传感器就是功率耦合器,一般为Directional Coupler。 它的主要参数有:详见其LDC Data Sheet 耦合量(Coupling) 插入损耗(Insertion Loss) 隔离度(Iso
射频典型电路讲解及分析(二)
基本构成电路分析 鉴相器(Phase Detector) 电荷泵——环路低通滤波器 (Charge Pump——Loop Filter ) 压控振荡器(Voltage Controlled Oscillator) 分频器(DIV) VCO的选择要素 Hi
基于毫米波微带天线设计的射频电路实验-(一)
本文设计了一个新的射频电路设计性实验项目———可用于无人机高度测量的毫米波雷达微带天线的设计与实现。该实验项目通过让学生完成该天线的自主设计、仿真、优化、制作和测试的过程,引导学生来深入体会实际射频工程中的实际流程和方法,从而提高其学习兴趣,进而进一步培养其工程素质、实践能力和创新精神。
RF无线射频电路设计中的常见问题及设计原则(二)
3.2.2电气分区原则 功率传输原则。蜂窝电话中大多数电路的直流电流都相当小,因此,布线宽度通常不是问题。不过.必须为高功率放大器的电源单独设定一条尽可能宽的大电流线,以将传输压降减到最低。为了避免太多电流损耗,需要采用多个通孔来将电流从某一层传递到另一层。 高功率器件的电源去耦。如
三极管开关电路图原理及设计详解-(二)
总而言之,三极管接成图1的电路之后,它的作用就和一只与负载相串联的机械式开关一样,而其启闭开关的方式,则可以直接利用输入电压方便的控制,而不须采用机械式开关所常用的机械引动(mechanicalactuator)﹑螺管柱塞(solenoidplunger)或电驿电枢(relayarmatur
示波器电路技术原理
常用示波器的人们都知道示波器装有计算机I/O端口,比如USB端口或以太网端口,因此基于这一特性使用这些端口来生成测试信号,只需合适的软件(可在许多标准机构的网站上查找到)来激活测试模式,您就拥有了一台信号发生器,下面小编来给大家简单的讲解一下! 示波器.jpg 这项功能可以提供在示波
无线产品射频电路设计的科学方法(二)
3、PCB联合仿真阶段:原理图设计其实是一种很理想的状况,它并没有考虑到器件的寄生效应以及PCB微带线的耦合效应。因此科学的做法是需要将设计好的PCB导入到ADS Momentum里面进行电磁场仿真,并重新调整优化匹配元件值。根据RF sister多年的经验,如果模型和仿真设置得足够正常的话
微波混合集成电路电路射频裸芯片封装的方法-(一)
对微波混合集成电路射频裸芯片表面封装工艺进行了研究。研究结果发现,通过对关键工艺点的控制,具有良好性能的 EGC-1700 无色防潮保护涂层可以实现在 X 波段的应用。对射频裸芯片的表面采用 EGC-1700 无色防潮保护涂层涂覆的低噪声放大器进行了湿热试验和高低温贮存试验,发现其关键
开关电源电路组成及各部分详解(一)
一、开关电源的电路组成 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。开关电源的电路组成方框图如下:二、输入电路的原理及常见电路1、AC
浅析射频集成电路与数字电路之间的联系
单片射频器件大大方便了一定范围内无线通信领域的应用,采用合适的微控制器和天线并结合此收发器件即可构成完整的无线通信链路。它们可以集成在一块很小的电路板上,应用于无线数字音频、数字视频数据传输系统,无线遥控和遥测系统,无线数据采集系统,无线网络以及无线安全防范系统等众多领域。
RCD电路图详解
若开关断开,蓄积在寄生电感中能量通过开关的寄生电容充电,开关电压上升。其电压上升到吸收电容的电压时,吸收二极管导通,开关电压被吸收二极管所嵌位,约为1V左右。寄生电感中蓄积的能量也对吸收电容充电。开关接通期间,吸收电容通过电阻放电。rcd吸收电路参数rcd吸收电路设计1、测量主变压器的初级漏感电
NFC芯片选型设计及电路框架
RFID 作为一项专业度较高的技术,在一些公司,可能还会专门招聘专业的 RFID 工程师。本篇阐述的涉及到的只是基本选型设计、电路框架,关于 RFID 天线调试、低功耗检卡调试等,后续再其他篇章会继续更新! NFC(Near Field Communication)芯片选型: 主
射频集成电路EDA关键技术与工具
射频集成电路指工作在射频频段的集成电路,是无线通信、雷达探测、智能传感等重要领域的基础。但在其电子设计自动化(EDA)技术与工具方面的不足是制约我国射频技术与产业自主发展的一个痛点。 上海交通大学毛军发院士领导的联合团队针对射频集成电路EDA关键科学技术问题和国家重大战略需求,突破电磁和耦合多
微波电路设计:PLL/VCO技术如何提升性能?-(一)
本文重点介绍近些年微波电路设计取得的进步,这意味着现在采用硅芯片技术中的低相位噪声 VCO 可以覆盖一个倍频程范围。 多年来,微波频率生成使工程师面临严峻的挑战,不仅需要对模拟、数字、射频(RF)和微波电子有深入的了解,尤其是锁相环(PLL)和压控振荡器(VCO)集成电路组
解读射频电路四大基础特性,PCB设计需注意哪些?
本文从射频界面、小的期望信号、大的干扰信号、相邻频道的干扰四个方面解读射频电路四大基础特性,并给出了在 PCB 设计过程中需要特别注意的重要因素。射频电路仿真之射频的界面无线发射器和接收器在概念上,可分为基频与射频两个部份。基频包含发射器的输入信号之频率范围,也包含接收器的输出信号之频率范围
基于毫米波微带天线设计的射频电路实验-(二)
2. 3 天线阵列设计 1) 天线形式确定 上式中,λ 0 为中心频率处的真空波长; f x 和 σ x为波束展宽因子; d 为辐射单元间距; N 为辐射单元数,α m 为最大辐射方向与平面阵元之间的夹角。为满足单元副瓣抑制条件,单元间距 d 必须小于波长λ 0