“闪耀”Nature拉曼显微术突破传统光学成像颜色极限
近年来,显微镜技术在不断地突破自身的局限。来自美国哥伦比亚大学的研究人员报道了一种全新的成像技术:电子预共振受激拉曼散射显微镜(Electronic Pre-Resonance Stimulated Raman Scattering Microscopy)。这一技术结合了拉曼散射光谱窄(~1 nm)以及荧光分析灵敏度高的优点。研究人员利用这种荧光成像技术,发现了24种颜色各异的探针,展示了多达16种颜色的活细胞成像和8种颜色的脑组织成像。这一研究成果公布在4月19日的Nature杂志上,文章的通讯作者是哥伦比亚大学化学系闵玮教授,闵玮早年毕业于北京大学,2008年在哈佛大学获化学博士学位,导师为美国科学院院士谢晓亮教授,之后在其课题组从事博士后研究。闵玮博士现任哥伦比亚大学化学系终身教授,研究成果多次发表在Nature Method、PNAS等国际学术期刊,因其科学贡献获得过很多奖项,其中包括2013年的斯隆研究......阅读全文
光学显微镜成像原理
显微镜是由一个透镜或几个透镜的组合构成的一种光学仪器,是人类进入原子时代的标志。主要用于放大微小物体成为人的肉眼所能看到的仪器。光学显微镜成像原理: 光学显微镜主要由目镜、物镜、载物台和反光镜组成。目镜和物镜都是凸透镜,焦距不同。物镜的凸透镜焦距小于目镜的凸透镜的焦距。物镜相当于投影
光学显微镜成像原理
学生用的显微镜是反像,上下左右与实际物体正好相反。物镜放大率乘以目镜放大率就是总放大倍数。
WITec推出TrueSurface显微拉曼光谱仪
拉曼聚焦形貌图像——最前沿显微镜配置的下一个革新 WITec,纳米显微镜分析系统的全球领导者,推出新的真正表面显微配件。这一革命性成像模式的核心要素是一种光学轮廓的集成传感器。一般的共聚焦显微镜探测面积比较小,而TrueSurface显微拉曼光谱仪的特点是探测面
超高分辨率显微技术的又一突破:分辨率提高四倍
几个世纪以来,光学显微镜的“衍射极限”一直被认为是无法超越的。近年来,科学家们从不同途径“突破”了这一极限,使人们能够分辨相距少于200nm的两个物体。这种超高分辨率显微技术也因此获得了2014年诺贝尔化学奖。 美国西北大学的研究团队最近在Nature Communications杂志上发布了
高性价比共聚焦拉曼成像系统
韩国NANOBASE公司专业生产高性价比共聚焦拉曼成像系统,为科学和工业领域提供最高性价比解决方案。新用户可以从购买基础款的XperRam Compact型拉曼光谱仪开始,之后可以通过不同的选项对拉曼光谱仪进行升级,以满足用户的不同需求。本产品具有超高性价,目前特惠价50万人民币,包含一套完
简介激光显微共焦拉曼光谱仪拉曼位移
在透明介质散射光谱中,入射光子与分子发生非弹性散射,分子吸收频率为ν0 的光子,发射ν0-ν1的光子,同时电子从低能态跃迁到高能态(斯托克斯线);分子吸收频率为ν0的光子,发射ν0+ν1的光子,同时电子从高能态跃迁到低能态(反斯托克斯线)。靠近瑞利散射线的两侧出现的谱线称为小拉曼光谱;远离瑞利散
激光显微共焦拉曼光谱仪的拉曼效应
光散射是自然界常见的现象。晴朗的天空之所以呈蓝色、早晚东西方的空中之所以出现红色霞光等,都是由于光发生散射而形成了不同的景观。拉曼光谱是一种散射光谱。在实验室中,我们通过一个很简单的实验就能观察到拉曼效应。在一暗室内,以一束绿光照射透明液体,例如戊烷,绿光看起来就像悬浮在液体上。若通过对绿光或蓝
传统光学显微镜与光学显微镜之大比拼
传统光学显微镜是利用光学原理,把人眼所不能分辨的微小物体放大成像,以供人们提取微细结构信息的光学仪器。光学显微镜一般由载物台、聚光照明系统、物镜,目镜和调焦机构组成。载物台用于承放被观察的物体。利用调焦旋钮可以驱动调焦机构,使载物台作粗调和微调的升降运动,使被观察物体调焦清晰成象。它的上层可以在水平
光学显微镜使用的传统光源
ITO由于其透明导电的特性可以作为触摸屏可视区的线路,在不影响观看的情况下,实现可视区下的线路导通。但ITO区域与非ITO区域由于折射率不同在未经处理时肉眼仍能分辨出,此时通过溅镀消影层(IM),尽量使两个区域的折射率接近,即ITO区反射率和非ITO反射率满足以下条件,人眼就不会察觉出ITO线路。光
北京市2025年度激光共聚焦及超高分辨显微学学术年会:前沿技术引领未来
北京市2025年度激光共焦及超高分辨显微学学术研讨会在北京中复大厦成功举办。本次会议由北京理化分析测试技术学会电子显微学专业委员会主办,旨在推动北京市及周边省市激光共焦超高分辨显微学的进步和发展,提高广大相关工作者的学术及技术水平,促进生物光学成像技术在生命科学等领域中的应用。近230位专家学者齐聚
关于光学显微镜成像光路系统的调整及显微镜检术概要
显微镜成像光路系统的调整,是根据不同显微镜检术的需要而进行的。所谓显微镜检术(microscopy),概括而言就是以显微镜观察样品时所使用的照明方法,以及如何使样品所成的像能获得更良好反差的技术与方法。以下简述显微镜检术中已成熟的几种方法及对应的显微镜成像光路系统的调整方法。 1.透射光明视野
AFM光学测量
光学测量突破光学衍射极限实现纳米级的光学成像与探测,一直是光学技术发展的前沿。2014 年诺贝尔化学奖授予了突破光学衍射极限的超分辨光学显微成像技术,包括受激发射损耗显微术、光敏定位显微术、随机光学重建显微术、饱和结构照明显微技术等。将AFM与光学技术结合起来,可以研究微纳米尺度下的光学现象和进行光
近场光学显微镜-原理及应用
近场光学显微镜(英文名:SNOM)是根据非辐射场的探测与成像原理,能够突破普通光学显微镜所受到的衍射极限,采用亚波长尺度的探针在距离样品表面几个纳米的近场范围进行扫描成像的技术,在近场观测范围内,在样品上进行扫描而同时得到分辨率高于衍射极限的形貌像和光学像的显微镜。 近场光学显微镜适用
新型超分辨显微技术的最新研究进展
从17世纪开始,现代生物学的发展就与显微成像技术紧密相关。然而,由于受光学衍射极限的影响,传统光学显微成像分辨率最小约为入射光波长的一半。因此,科学家们一直在不断努力,试图寻找突破光学显微镜分辨极限的方法。 在超分辨显微技术飞速发展的同时,现有成像技术的缺陷也日益显现,例如成像分辨率和成像时间不
新型超分辨显微技术的最新研究进展
从17世纪开始,现代生物学的发展就与显微成像技术紧密相关。然而,由于受光学衍射极限的影响,传统光学显微成像分辨率最小约为入射光波长的一半。因此,科学家们一直在不断努力,试图寻找突破光学显微镜分辨极限的方法。 在超分辨显微技术飞速发展的同时,现有成像技术的缺陷也日益显现,例如成像
显微拉曼荧光成像综合测试系统的功能和技术参数
显微拉曼荧光成像综合测试系统的功能和技术参数 显微拉曼荧光成像综合测试系统功能: 显微荧光,显微拉曼,显微荧光寿命,超低波数拉曼5cm-1 快速荧光寿命成像,快速拉曼成像; 荧光寿命FLIM成像 PLIM成像 FCS; 微区透射吸收;微区反射吸收; 可扩展到近
显微拉曼光谱仪概述
显微拉曼光谱仪是一种用于环境科学技术及资源科学技术领域的分析仪器,于2018年11月30日启用。 技术指标 光谱扫描范围: 186~5000cm-1输出功率: 0~50mW瑞利线阻止: OD8,最小可探测波数186cm-1数值孔径: 0.42工作距离: 20mm单色仪: F/#=8光栅: 1
AIRsight红外拉曼显微镜
关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理 商网络以及60多个技术服务站,已构筑起为广大用户
西安光机所计算光学显微成像研究获进展
使用光学显微镜进行病理切片检查是癌症诊断的“金标准”。传统的数字病理学常使用高倍物镜和扫描拼接的方法以获得大视场、高分辨率图像,但高精密电动位移台、高倍物镜、脉冲光源等组件价格昂贵,提高了仪器设备的成本,且大量的机械运动也会减缓成像的时间效率。同时,高倍物镜带来的景深狭小和机械扫描拼接带来的伪影
西安光机所计算光学显微成像研究获进展
使用光学显微镜进行病理切片检查是癌症诊断的“金标准”。传统的数字病理学常使用高倍物镜和扫描拼接的方法以获得大视场、高分辨率图像,但高精密电动位移台、高倍物镜、脉冲光源等组件价格昂贵,提高了仪器设备的成本,且大量的机械运动也会减缓成像的时间效率。同时,高倍物镜带来的景深狭小和机械扫描拼接带来的伪影
从微区拉曼到现代的激光共聚焦显微拉曼
拉曼微区探针(微区拉曼)是把显微镜和拉曼光谱联系起来,测得的拉曼光谱具有较高的精确性,可以用来进行表面光谱学研究,发现与组分化学性质有关的表面均一性。 拉曼微区探针的概念最早是由Tomas Hirshfled在1969年提出的。图1给出了第一台成功的拉曼显微镜示意图。它把常规显微镜和配有高灵敏
超分辨光学显微成像技术的新进展
从17世纪开始,现代生物学的发展就与显微成像技术紧密相关。然而,由于受光学衍射极限的影响,传统光学显微成像分辨率最小约为入射光波长的一半。因此,科学家们一直在不断努力,试图寻找突破光学显微镜分辨极限的方法。在超分辨显微技术飞速发展的同时,现有成像技术的缺陷也日益显现,例如成像分辨率和成像时间不可兼得
光学显微镜的成像原理
基本原理在光学显微镜下无法看清小于0.2µm的细微结构,这些结构称为亚显微结构(submicroscopic structures)或超微结构(ultramicroscopic structures;ultrastructures)。要想看清这些结构,就必须选择波长更短的光源,以提高显微镜的分辨率。
光学显微镜的成像原理
光学显微镜的成像研究和设计,是以人眼可见光光线(人们常说的:可见光)的物理现象为基础进行的。光学显微镜的分辨力受可见光波长的限制,质量较好的光学显微镜的分辨极限约为0.2μm。小于光波波长的物体因衍射而不能成像。为了观察到更细微的物体和结构,科学家采用更短波长的电子射线来代替光波,设计出了电子显微镜
光学显微镜的成像原理
光学显微镜的原理光学显微镜主要由目镜、物镜、载物台和反光镜组成。目镜和物镜都是凸透镜,焦距不同。物镜的凸透镜焦距小于目镜的凸透镜的焦距。物镜相当于投影仪的镜头,物体通过物镜成倒立、放大的实像。目镜相当于普通的放大镜,该实像又通过目镜成正立、放大的虚像。经显微镜到人眼的物体都成倒立放大的虚像。反光镜用
光学显微镜新突破:超越衍射极限10倍,分辨率可达30nm!
范德堡大学(Vanderbilt University)机械工程学Joshua Caldwell副教授团队12月11日在著名学术期刊《Nature Materials》发表文章,报道了这项不大不小的“奇迹”。 安东尼•列文虎克(Antony van Leeuwenhoek)试验玻璃、宝石和钻石
超分辨率显微镜荣获诺贝尔奖为何华人学者落选
瑞典皇家科学院8日宣布,将2014年诺贝尔化学奖授予美国科学家Eric Betzig、William Moerner 和德国科学家Stefan Hell,以表彰他们为发展超分辨率荧光显微镜所作的贡献。 几个世纪以来,光学显微镜的“衍射极限”一直被认为是无法超越的。现在人们从不同途径“突破”了这
西安光机所研发出颜色迁移傅里叶叠层显微术方法
论文首页。CFFPM方法的恢复流程及结果对比。 论文作者供图使用光学显微镜进行病理切片检查是癌症诊断的“金标准”。然而传统的数字病理学常常使用高倍物镜和扫描拼接的方法来获得大视场、高分辨率图像,高精密电动位移台、高倍物镜、脉冲光源等组件价格昂贵,提高了仪器设备的成本,大量的机械运动也会减缓成像的时间
海洋光学拉曼光谱SERS基底的优势
海洋光学SERS基底的优势高灵敏性。经过与同类基底进行对比测试,该基底具有很好的性能并且对一系列分析物都表现出了较高的灵敏性。高稳定性。 高稳定性基底无需特殊处理便可在室温下储藏。可靠的重现性。 可高度重现性和容易进行大规模生产,使得能以实惠的价格实现灵敏测量。个性化的外形。 独特的生产技术可实现定
奥谱天成ATR8810超高速线扫共聚焦显微拉曼光谱成像仪进入ANTOP奖大众评审
2024年第一期 ANTOP奖评审正在进行中。由奥谱天成(厦门)光电有限公司申报的“技术创新奖”Antop奖进入大众评审阶段。奖项主体:ATR8810超高速线扫共聚焦显微拉曼光谱成像仪奖项名称:技术创新奖 ATR8810超高速线扫共聚焦显微拉曼光谱成像仪申报理由ATR8810超高速线扫共聚焦显微拉曼