“闪耀”Nature拉曼显微术突破传统光学成像颜色极限

近年来,显微镜技术在不断地突破自身的局限。来自美国哥伦比亚大学的研究人员报道了一种全新的成像技术:电子预共振受激拉曼散射显微镜(Electronic Pre-Resonance Stimulated Raman Scattering Microscopy)。这一技术结合了拉曼散射光谱窄(~1 nm)以及荧光分析灵敏度高的优点。研究人员利用这种荧光成像技术,发现了24种颜色各异的探针,展示了多达16种颜色的活细胞成像和8种颜色的脑组织成像。这一研究成果公布在4月19日的Nature杂志上,文章的通讯作者是哥伦比亚大学化学系闵玮教授,闵玮早年毕业于北京大学,2008年在哈佛大学获化学博士学位,导师为美国科学院院士谢晓亮教授,之后在其课题组从事博士后研究。闵玮博士现任哥伦比亚大学化学系终身教授,研究成果多次发表在Nature Method、PNAS等国际学术期刊,因其科学贡献获得过很多奖项,其中包括2013年的斯隆研究......阅读全文

“闪耀”Nature-拉曼显微术突破传统光学成像颜色极限

近年来,显微镜技术在不断地突破自身的局限。来自美国哥伦比亚大学的研究人员报道了一种全新的成像技术:电子预共振受激拉曼散射显微镜(Electronic Pre-Resonance Stimulated Raman Scattering Microscopy)。这一技术结合了拉曼散射光谱窄(

哥大闵玮组:新型显微术突破传统光学成像的颜色极限

  生命科学研究水平的发展很大程度上要归功于新型研究手段和生物技术的创新。其中,光学成像技术贯穿了生命科学研究的历史与未来。上至17世纪列文虎克利用显微镜开创了微生物学,下到如今已经广泛应用的荧光共聚焦显微镜,这个领域的每一次技术突破都极大地增强了人们认识微观世界的能力。近年来,光学显微镜技术在不断

相干拉曼散射显微术详解-Ⅱ

上节我们讲到——相干拉曼散射(CRS)显微术是一种基于分子化学键振动的成像手段。相比于荧光光谱,拉曼光谱具有窄得多的谱峰宽度(图 1),可以选择探测的分子种类将更多,特异性也更高。例如,生物组织中的蛋白、脂质和核酸等具有各自的拉曼光谱特征,利用 CRS 可以在无需染色/标记的前提下对它们进行

又一华裔新星-Nature发文报道成像技术重大突破

  来自美国哥伦比亚大学的研究人员报道了一种全新的成像技术:电子预共振受激拉曼散射显微镜(Electronic Pre-Resonance Stimulated Raman Scattering Microscopy)。这一技术结合了拉曼散射光谱窄(~1 nm)以及荧光分析灵敏度高的优点。研究人员利

相干拉曼散射显微术详解I

“一花一世界”,这句充满禅意的话在微观视野中得到完美诠释。而构成世间万千纷繁的原子由化学键联合为分子,不同的分子往往具有特异性的化学键振动,成为它们的指纹特征。相干拉曼散射(Coherent Raman Scattering,CRS)显微术便是通过探测目标分子的特征振动来提供成像所需的衬度, 同时基

显微成像拉曼光谱仪概述

  显微成像拉曼光谱仪是一种用于材料科学、畜牧、兽医科学、农学、药学领域的计量仪器,于2018年10月9日启用。  技术指标  1. *光谱仪:光谱仪采用三反射镜消像差光路设计,全光谱范围无色差,系统通光效率>30%。 2.*EMCCD探测器 1).Andor公司EMCCD探测器 2).真空密封,致

新容积化学成像技术有望实现非侵入性早期疾病诊断

近日,来自中国西安电子科技大学生物光学成像研究组的研究人员通过研究开发了一种全新的成像技术:受激拉曼投影显微和断层成像术(Stimulated Raman projection microscopy and tomography);这一技术结合了受激拉曼散射显微成像免标记以及贝塞尔光束穿透深

突破衍射极限,还看“近场光学”!

原文地址:http://news.sciencenet.cn/htmlnews/2023/4/499626.shtm

大咖讲堂-|-相干拉曼散射显微术-Ⅱ

  上节我们讲到——相干拉曼散射(CRS)显微术是一种基于分子化学键振动的成像手段。相比于荧光光谱,拉曼光谱具有窄得多的谱峰宽度(图 1),可以选择探测的分子种类将更多,特异性也更高。例如,生物组织中的蛋白、脂质和核酸等具有各自的拉曼光谱特征,利用 CRS 可以在无需染色/标记的前提下对它们进行区分

拉曼成像技术

拉曼成像技术是新一代快速、高精度、面扫描激光拉曼技术,它将共聚焦显微镜技术与激光拉曼光谱技术完美结合,作为第三代Raman技术,具备高速、极高分辨率成像的特点。相对于原来的传统拉曼应用技术而言,新一代拉曼成像速度是常规Raman mapping的300-600倍,一般在几分钟之内即可获取样品高分率的

光学显微镜的极限

光学显微镜的极限要了解电子显微镜,我们还得从光学显微镜说起。在生活中,当我们需要放大观察一些小东西时,首先想到的就是放大镜,即光学凸透镜。凸透镜利用光线通过透镜时发生的折射使其聚焦,从而达到放大被观察对象的目的。常用的现代光学显微镜则是多个光学透镜的组合,其中起放大作用的目镜和物镜就是凸透镜。在我的

超高速显微拉曼成像光谱仪

RIMA激光拉曼显微成像系统技术是新一代快速、高精度、面扫描激光拉曼技术,它将共聚焦显微技术与激光拉曼光谱技术完美结合!Photon etc公司RIMA拉曼成像技术是新一代快速、高精度、面扫描激光拉曼技术,它将共聚焦显微技术与激光拉曼光谱技术完美结合,与传统的点成像拉曼系统不同,采用面成像技

又一华裔新星-Nature发文报道成像技术重大突破

  来自美国哥伦比亚大学的研究人员报道了一种全新的成像技术:电子预共振受激拉曼散射显微镜(Electronic Pre-Resonance Stimulated Raman Scattering Microscopy)。这一技术结合了拉曼散射光谱窄(~1 nm)以及荧光分析灵敏度高的优点。研究人员利

拉曼成像应用案例

应用案例编辑快速区分单层与多层石墨烯nanphoton石墨烯案例激光源:532nm。物镜:100X,NA=0.9。光谱数:67,600(400*169)。测量时间:5分30秒。通过高速高分辨拉曼成像技术,可以对不同层数的石墨烯快速成像。以350纳米的高空间分辨率,仅用5分钟的测量时间即可识别从单层到

扫描拉曼埃分辨显微术:多名学者合作在拉曼领域获进展

  最近,中国科学院院士、中国科学技术大学教授侯建国领衔的单分子科学团队的董振超研究组与罗毅研究组,在单分子拉曼成像领域取得新进展,实现了埃级单化学键分辨的分子内各种振动模式的实空间成像,并提出了一种全新的分子化学结构重构技术——扫描拉曼埃分辨显微术(Scanning Raman Picoscopy

侯建国院士团队实现埃级单化学键分辨实空间成像

  最近,中国科学院院士、中国科学技术大学教授侯建国领衔的单分子科学团队的董振超研究组与罗毅研究组,在单分子拉曼成像领域取得新进展,实现了埃级单化学键分辨的分子内各种振动模式的实空间成像,并提出了一种全新的分子化学结构重构技术——扫描拉曼埃分辨显微术(Scanning Raman Picoscopy

最灵敏的单分子远场拉曼显微成像:拉曼与荧光的圆舞曲

拉曼光谱的精细结构可以提供丰富的分子结构信息,并且可以用于解析分子的动力学以及与溶剂环境的相互作用。然而遗憾的是,拉曼散射过程异常微弱,普通拉曼散射的散射截面比一般染料分子的吸收截面要小1014倍。通过表面等离子体共振对光场的放大,表面增强拉曼光谱技术可以实现单分子灵敏度的拉曼检测。然而这种表面增强

拉曼成像之线形照明

线形照明高速高分辨拉曼成像系统采用线性照明,产生线形RAMAN散射光。特殊的光学系统确保光强的均匀分布狭缝聚焦。拉曼成像共聚焦光学系统实现高分辨率拉曼成像。同一共聚焦光学系统用于快速拉曼成像。拉曼成像

拉曼成像光谱仪

  拉曼成像光谱仪是一种用于生物学、基础医学、临床医学、药学领域的分析仪器,于2013年12月31日启用。  技术指标  1) 激光器:内置3个激光器 —532nm、638nm和785nm; 2) 光栅:4块光栅全自动切换,自由选择多种光谱分辨率; 3) 光谱范围:100cm-1到4000cm-1,

拉曼成像的应用案例

快速区分单层与多层石墨烯激光源:532nm。物镜:100X,NA=0.9。光谱数:67,600(400*169)。测量时间:5分30秒。通过高速高分辨拉曼成像技术,可以对不同层数的石墨烯快速成像。以350纳米的高空间分辨率,仅用5分钟的测量时间即可识别从单层到四层的石墨烯及其分布。材料应力分布图像分

传统光学显微镜与近场光学显微镜

      近场光学显微镜是对于常规光学显微镜的革命。它不用光学透镜成像,而用探针的针尖在样品表面上方扫描获得样品表面的信息。分析了传统光学显微镜与近场光学显微镜成像原理的物理本质和两种显微镜系统结构的异同点。介绍了光纤探针的制作方法。重点讨论了近场探测原理、光学隧道效应及非辐射场的性质。  传统光

什么是光学显微术?

中文名称光学显微术英文名称optical microscopy定  义用光作照明工具的显微术。应用学科机械工程(一级学科),光学仪器(二级学科),显微镜-显微镜一般名词(三级学科)

激光共焦显微拉曼光谱仪相比传统有什么优势

激光共焦显微拉曼光谱仪比传统的色散型拉曼光谱仪在工作效率,运行速度、分辨率、灵敏度和微量样品分析诸方面都有了很大的提高。它采用先进的光学系统设计及全息滤光片,CCD探测器等先进技术,使仪器的灵敏度及数据采集速度大大提高,总效率(信号/功率!时间)比传统仪器提高了近3个数量级。利用共焦显微拉曼光谱仪作

近场光学显微镜的背景

传统光学显微镜(即远场光学显微镜)是显微镜家族中年代最久远的成员,它曾是观测微小结构的唯一手段。传统光学显微镜由光学透镜组成,利用折射率变化和透镜的曲率变化,将被观察的物体放大,来获得其细节信息。然而,光的衍射极限限制了光学显微镜分辨力的进一步提高。由瑞利分辨力极限可知,光学显微镜的放大倍数是不能任

Nature-Communications:我国研制光学薄膜的平面显微成像元件

  近日,中国科大物理学院光电子科学与技术安徽省重点实验室/合肥微尺度物质科学国家研究中心张斗国教授研究组提出并实现了一种基于光学薄膜的平面型显微成像元件,用作被测样本的载波片,可在常规的明场光学显微镜上实现暗场显微成像和全内反射成像,而获取高对比度的光学显微图像。研究成果以“Planar phot

WITec推出TrueSurface显微拉曼光谱仪

 拉曼聚焦形貌图像——最前沿显微镜配置的下一个革新   WITec,纳米显微镜分析系统的全球领导者,推出新的真正表面显微配件。这一革命性成像模式的核心要素是一种光学轮廓的集成传感器。一般的共聚焦显微镜探测面积比较小,而TrueSurface显微拉曼光谱仪的特点是探测面

超高分辨率显微技术的又一突破:分辨率提高四倍

  几个世纪以来,光学显微镜的“衍射极限”一直被认为是无法超越的。近年来,科学家们从不同途径“突破”了这一极限,使人们能够分辨相距少于200nm的两个物体。这种超高分辨率显微技术也因此获得了2014年诺贝尔化学奖。  美国西北大学的研究团队最近在Nature Communications杂志上发布了

光学显微术的技术特点

中文名称光学显微术英文名称optical microscopy定  义用光作照明工具的显微术。应用学科机械工程(一级学科),光学仪器(二级学科),显微镜-显微镜一般名词(三级学科)

光学显微镜成像原理

学生用的显微镜是反像,上下左右与实际物体正好相反。物镜放大率乘以目镜放大率就是总放大倍数。

光学显微镜成像原理

  显微镜是由一个透镜或几个透镜的组合构成的一种光学仪器,是人类进入原子时代的标志。主要用于放大微小物体成为人的肉眼所能看到的仪器。光学显微镜成像原理:       光学显微镜主要由目镜、物镜、载物台和反光镜组成。目镜和物镜都是凸透镜,焦距不同。物镜的凸透镜焦距小于目镜的凸透镜的焦距。物镜相当于投影