Antpedia LOGO WIKI资讯

AFM发展历程:从原理到应用

原子力显微镜(atomic force microscope,简称AFM),也称扫描力显微镜(scanning force microscopy,SFM))是一种纳米级高分辨的扫描探针显微镜,是由IBM苏黎士研究实验室的比宁(Gerd Binning)、魁特(Calvin Quate)和格勃(Christoph Gerber)于1986年发明的。AFM测量的是探针顶端原子与样品原子间的相互作用力——即当两个原子离得很近使电子云发生重叠时产生的泡利(Pauli)排斥力。工作时计算机控制探针在样品表面进行扫描,根据探针与样品表面物质的原子间的作用力强弱成像。 世界上第一台原子力显微镜和发明人之一比宁 以一种简单的方式进行类比,如同一个人利用一艘小船和一根竹竿绘制河床的地形图。人可以站在小船上将竹竿伸到河底,以此判断该点的位置河床的深度,当在一条线上测量多个点后就可以知道河床在这条线上的深度。同样道理绘制多条深度线进行组合,一......阅读全文

AFM位置检测

位置检测部分主要是由激光和激光检测系统组成。而反馈系统中主要包含一系列的压电陶瓷管。压电陶瓷是一种性能奇特的材料,当在压电陶瓷对称的两个端面加上电压时,压电陶瓷会按特定的方向伸长或缩短。而伸长或缩短的尺寸与所加的电压的大小成线性关系。即可以通过改变电压来控制压电陶瓷的微小伸缩。通常把三个分别代表X,

AFM应用举例

 AFM应用举例由于原子力显微镜对所分析样品的导电性无要求,因此使其在诸多材料领域中得到了广泛应用。透明导电的ITO薄膜,随着成膜方法、膜厚、基底温度等成膜条件变化,而表面形貌不同。将膜厚120nm(左)与450nm(右)的ITO薄膜进行比较时,随着膜厚的增加,每个结晶颗粒明显地长大。另外,明显地观

AFM应用实例

应用实例1.应用于纸张质量检验。 2.应用于陶瓷膜表面形貌分析。 3.评定材料纳米尺度表面形貌特征陶瓷膜表面形貌的三维图象

AFM应用实例

应用实例   1.应用于纸张质量检验。 2.应用于陶瓷膜表面形貌分析。 3.评定材料纳米尺度表面形貌特征  原子力显微镜是以扫描隧道显微镜基本原理发展起来的扫描探针显微镜。原子力显微镜的出现无疑为纳米科技的发展起到了推动作用。以原子力显微镜为代表的扫描探针显微镜是利用一种小探针在样品表面上扫描,从而

AFM简谈

原子力显微镜(AFM)虽然名字里有“显微镜”三个字,但它并不像光学显微镜和电子显微镜那样能“看”微观下的物体,而是通过一根小小的探针来间接地感知物体表面的结构,得到样品表面的三维形貌图象,并可对三维形貌图象进行粗糙度计算、厚AFM主要由带针尖的微悬臂、微悬臂运动检测装置、监控其运动的反馈回路、使样品

AFM形态结构

形态结构  作为新兴的形态结构成像技术,AFM实现了对接近自然生理条件下生物样品的观察。这主要由于它具备以下几个特点:  1).与扫描电镜和透射电镜这些高分辨的观测技术相比,样品制备过程简便,可以不需染色、包埋、电镀、电子束的照射等处理过程;  2).除对大气中干燥固定后样品的观察外,还能对液体中样

AFM相移模式

相移模式(相位移模式)作为轻敲模式的一项重要的扩展技术,相移模式(相位移模式)是通过检测驱动微悬臂探针振动的信号源的相位角与微悬臂探针实际振动的相位角之差(即两者的相移)的变化来成像。引起该相移的因素很多,如样品的组分、硬度、粘弹性质等。因此利用相移模式(相位移模式),可以在纳米尺度上获得样品表面局

AFM热学测量

热学测量目前,微纳米尺度下的热物性研究受到了极大的挑战:一方面,许多热物性的基础概念性问题不清楚,如微观尺度下非平衡态的温度如何定义等;另一方面,传统测试系统由于自身精度限制,很多热物性参数都无法直接测量,因此,无论是微纳尺度下热传导等的理论机制研究,还是微纳电子学和能源器件中的热传导、热耗散、热转

AFM电学测量

电学测量如果微悬臂是用导电材料制成或外层镀有导电金属层,则探针可作为一个移动电极来施加电压和探测电流,从而来研究材料的微区电学性质,该技术通常称为导电原子力显微术(conductive-AFM,C-AFM)。利用导电原子力显微术可以探测样品的表面电荷、表面电势、表面电阻、微区导电性、微区介电特性、非

什么是AFM

明。AFM 是一種類似於STM 的顯微技術,它的許多元件和STM是共同的,如用於三 維掃描的電壓陶瓷系統以及反饋控制器等。它和STM 最大的不同是用一個對微弱作用 力極其敏感的微懸臂針尖代替了STM 的隧道針尖,並以探測原子間的微小作用力(Van der Walls’ Force)代替了STM 的微