PDA阵列光谱仪对透射率测定的相关方法
PDA阵列光谱仪采用先进的PDA(脉冲分布分析法)技术,可以同时快速、高精度分析金属材料的元素组成,是质量管理分析中广泛应用的分析仪器。所谓发射光谱分析是指使用放电等离子体蒸发气化来激发样品中的目标元素,根据得到的元素固有的亮线光谱(原子光谱)的波长进行定性,并根据发光强度进行定量的分析方法。 光谱分析仪器的透射率是影响分析结果的一项重要指标,它的测定对结果的准确性将产生直接影响,因此总结了透射率测定的相关方法供大家参考。 PDA阵列光谱仪的透射率或它的效率可用辅助单色仪装置来测定。在可见和近紫外实现这些测量没有任何困难。测量通过头个单色仪的光通量,紧接着测量通过两个单色仪的光通量,以这种方式来确定第二个单色仪的透射率。 绝对测量需要知道单色仪的绝对透射率。对于相对测量,以各种波长处的相对单位可以测量透射率。真空紫外线的这些测量有相当大的实验困难,因此通常使用辅助单色仪。在各种入射角的情况下分别测量衍射光栅的效率。在许......阅读全文
PDA阵列光谱仪对透射率测定的相关方法
PDA阵列光谱仪采用先进的PDA(脉冲分布分析法)技术,可以同时快速、高精度分析金属材料的元素组成,是质量管理分析中广泛应用的分析仪器。所谓发射光谱分析是指使用放电等离子体蒸发气化来激发样品中的目标元素,根据得到的元素固有的亮线光谱(原子光谱)的波长进行定性,并根据发光强度进行定量的分析方法。
光谱仪知识电感耦合等离子体发射光谱仪的主要组成
电感耦合等离子体发射光谱仪的透射率或它的效率可用辅助单色仪装置来测定。在可见和近紫外实现这些测量没有任何困难。测量通过一个单色仪的光通量,紧接着测量通过两个单色仪的光通量,以这种方式来确定第二个单色仪的透射率。 测量需要知道单色仪的透射率:对于相对测量,以各种波长处的相对单位可以测量透射率。真空紫
透射率测量
1. 对于各种光学材料,如玻璃、塑料、晶体、薄膜等的透射比测量,可以采用CUV-UV/VIS样品支架(图4),支架两端通过光纤分别接光谱仪和光源。测量步骤,先测量光路中未放样品时的光强P1存为参考,再将待测样品置于样品支架中测量透过的光强P2,软件会自动给出透射比T。 2.
阵列式CCD光谱仪有哪些缺点?
①基底噪声较大; ②暗电流与温度关系密切,需冷却,每降低5~7℃,暗流就减小一半,专业应用的CCD常用液氮制冷,使其温度低于-110℃;半导体制冷一般为-10℃至-20℃,难以达到很高水平; ③ CCD器件各个像素的量子效率不一致,会造成各波长光功率大小测量误差,这比上面提到的光电倍增管光阴
透射率测量配置
透射测量常用配置:紫外/可见光波段 近红外波段 光谱仪 AvaSpec-ULS2048XL 高紫外灵敏度光谱仪(200- 1100nm)AvaSpec-NIR256-2.5光谱仪 (1000-2500nm) 软件 AvaSoft-Full全功能软件光源 Av
美国开发“平面阵列红外线光谱仪”
研究发现,高精度声谱仪能够早期检测疾病、化学武器和环境污染物。 美国PAIR技术公司开发一种新型传感器“平面阵列红外线光谱仪”,它可以在较低浓度下在液体和气体中识别生物和化学因子,检测时间低于1秒。新的光谱谱仪没有移动部件,依靠焦平面阵列(FPA)探测器。 “这是现有的技术的一个良好
简介阵列式CCD光谱仪内部的工作原理
与光电倍增管式不同的地方是,阵列式CCD光谱仪由光栅把被测灯的复色光分解为按波长大小顺序排列的光谱光功率信号,并一次性同时投射到可区分光谱波长的CCD阵列上,这种一次成像接收并获得各波长光谱光功率信号的方式替代了需要扫描依次把单色光输入到光电倍增管中来“分时段”接收各波长光谱光功率信号。并由此不
反射率/透射率测量
反射率/透射率测量 反射率测量1. 反射通常分为镜面反射和漫反射。当入射光在物体表面发生镜面反射,通过反射探头(FCR)测量,易造成光谱仪饱和,同时受测量距离及方向变化的影响较大。要保证测量精度,探头到物体表面的距离必须跟探头到镜面参考(RS-2)的距离保持一致。2. 当入射光在物体表面发生漫反射,
用于透射率测量的透镜支架
用于透射率测量的透镜支架 74-ACH可调节准直透镜支架是一种应用广泛组件,可将透镜安装在多个垂直和水平位置,特别适合厚度达10厘米的样品的透射率测量。 该组件具有阳极电镀铝和可调节安装条,可以通过四个3/8-24螺纹孔安装准直透镜,从安装条顶部开始每间隔1英寸有一个安装孔。产品详情
光谱仪透射测定
光谱仪的透射率或它的效率可用辅助单色仪装置来测定。在可见和近紫外实现这些测量没有任何困难。测量通过第一个单色仪的光通量,紧接着测量通过两个单色仪的光通量,以这种方式来确定第二个单色仪的透射率。绝对测量需要知道单色仪的绝对透射率:对于相对测量,以各种波长处的相对单位可以测量透射率。真空紫外线的这些测量
吸光度与透射率有什么关系
吸光度单位为abs物体对光的作用分为三种:反射(wρ)、吸收(wа)、透射(wτ)且三种参数的关系为:ρ+а+τ=1即:反射率+吸收率+透射率=1所以,如果物体不透射,则,吸收率=1—反射率
关于光谱仪的透射测定的介绍
光谱仪的透射率或它的效率可用辅助单色仪装置来测定。在可见和近紫外实现这些测量没有任何困难。测量通过第一个单色仪的光通量,紧接着测量通过两个单色仪的光通量,以这种方式来确定第二个单色仪的透射率。 绝对测量需要知道单色仪的绝对透射率:对于相对测量,以各种波长处的相对单位可以测量透射率。真空紫外线的
光谱仪的透射测定
光谱仪的透射率或它的效率可用辅助单色仪装置来测定。在可见和近紫外实现这些测量没有任何困难。测量通过第一个单色仪的光通量,紧接着测量通过两个单色仪的光通量,以这种方式来确定第二个单色仪的透射率。 绝对测量需要知道单色仪的绝对透射率:对于相对测量,以各种波长处的相对单位可以测量透射率。真空紫外线的
光谱仪的透射测定
光谱仪的透射率或它的效率可用辅助单色仪装置来测定。在可见和近紫外实现这些测量没有任何困难。测量通过第一个单色仪的光通量,紧接着测量通过两个单色仪的光通量,以这种方式来确定第二个单色仪的透射率。 绝对测量需要知道单色仪的绝对透射率:对于相对测量,以各种波长处的相对单位可以测量透射率。真空紫外线的
光谱仪的透射测定
光谱仪的透射率或它的效率可用辅助单色仪装置来测定。在可见和近紫外实现这些测量没有任何困难。测量通过第一个单色仪的光通量,紧接着测量通过两个单色仪的光通量,以这种方式来确定第二个单色仪的透射率。 绝对测量需要知道单色仪的绝对透射率:对于相对测量,以各种波长处的相对单位可以测量透射率。真空紫外线的
PDA阵列光谱仪对金属材料化学成分的定量检测
PDA阵列光谱仪继承光电发射光谱仪的精华,标配时间分解PDA(脉冲分布分析)测光法,可以同时快速、准确地分析金属的元素组成,是金属质量管理分析中应用广泛的分析仪器。 PDA阵列光谱仪可广泛应用于钢铁、铸造、有色、汽车、机械等众多行业,提高对冶炼工业和机械加工工业的工程管理分析、原材料验收及产品出
X射线荧光光谱仪的原理
X射线荧光的物理原理:当材料暴露在短波长X光检查,或伽马射线,其组成原子可能发生电离,如果原子是暴露于辐射与能源大于它的电离势,足以驱逐内层轨道的电子,然而这使原子的电子结构不稳定,在外轨道的电子会“回补”进入低轨道,以填补遗留下来的洞。在“回补”的过程会释出多余的能源,光子能量是相等两个轨道的能量
X射线荧光光谱仪的原理
X射线荧光的物理原理:当材料暴露在短波长X光检查,或伽马射线,其组成原子可能发生电离,如果原子是暴露于辐射与能源大于它的电离势,足以驱逐内层轨道的电子,然而这使原子的电子结构不稳定,在外轨道的电子会“回补”进入低轨道,以填补遗留下来的洞。在“回补”的过程会释出多余的能源,光子能量是相等两个轨道的能量
X射线荧光光谱仪的原理
X射线荧光的物理原理:当材料暴露在短波长X光检查,或伽马射线,其组成原子可能发生电离,如果原子是暴露于辐射与能源大于它的电离势,足以驱逐内层轨道的电子,然而这使原子的电子结构不稳定,在外轨道的电子会“回补”进入低轨道,以填补遗留下来的洞。在“回补”的过程会释出多余的能源,光子能量是相等两个轨道的能量
X射线荧光光谱仪的原理
X射线荧光的物理原理:当材料暴露在短波长X光检查,或伽马射线,其组成原子可能发生电离,如果原子是暴露于辐射与能源大于它的电离势,足以驱逐内层轨道的电子,然而这使原子的电子结构不稳定,在外轨道的电子会“回补”进入低轨道,以填补遗留下来的洞。在“回补”的过程会释出多余的能源,光子能量是相等两个轨道的能量
X射线荧光光谱仪的原理
X射线荧光的物理原理:当材料暴露在短波长X光检查,或伽马射线,其组成原子可能发生电离,如果原子是暴露于辐射与能源大于它的电离势,足以驱逐内层轨道的电子,然而这使原子的电子结构不稳定,在外轨道的电子会“回补”进入低轨道,以填补遗留下来的洞。在“回补”的过程会释出多余的能源,光子能量是相等两个轨道的能量
X射线荧光光谱仪的原理
X射线荧光的物理原理:当材料暴露在短波长X光检查,或伽马射线,其组成原子可能发生电离,如果原子是暴露于辐射与能源大于它的电离势,足以驱逐内层轨道的电子,然而这使原子的电子结构不稳定,在外轨道的电子会“回补”进入低轨道,以填补遗留下来的洞。在“回补”的过程会释出多余的能源,光子能量是相等两个轨道的能量
什么是微阵列?
微阵列(DNA Microarray)也叫寡核苷酸阵列(Oligonucleotide array),是人类基因组计划(Human Genome Project,HGP)的逐步实施和分子生物学的迅猛发展及运用的产物,它是生物学家受到计算机芯片制造和广为应用的启迪,融微电子学、生命科学、计算机科学和光
必达泰克正式发布Sol2.6系列光纤耦合InGaAs阵列光谱仪
美国特拉华州当地2011年1月4日,必达泰克正式发布Sol™ 2.6系列光纤耦合InGaAs阵列光谱仪。Sol™ 2.6光谱仪采用高性能线阵256元InGaAs阵列,具有高灵敏度和高动态范围的特点,致冷温度-15°C,标准光谱范围1550-2550nm。该型光谱仪最大的优势是配备自动校零功能、极
尼高力红外光谱仪的灵敏度和分辨率更高
尼高力红外光谱仪是根据光的相干原理设计的,因此它是一种干涉光谱仪,主要由光源,干涉仪,探测器,计算机和记录系统组成。在移动镜的过程中,在一定的长度范围内,在尺寸受限且距离相等的位置,由这些数据点组成干涉图,然后对干涉图进行处理。每个数据点由两个数字组成,分别对应于x轴和y轴,对于同一数据点,X和
DNA微阵列的简介
DNA微阵列(DNA microarray)又称DNA阵列或DNA芯片,比较通俗的名字是基因芯片(gene chip)。是一块带有DNA微阵列(micorarray)涂层的特殊玻璃片,在数平方厘米之面积上安装数千或数万个核酸探针,经由一次测验,即可提供大量基因序列相关资讯。它是基因组学和遗传学研
微阵列芯片的应用
微阵列芯片是指采用光导原位合成或微量点样等方法,将大量生物大分子比如核酸片段、多肽分子甚至组织切片、细胞等生物样品有序地固化于支持物(如玻片、尼龙膜等载体)的表面,组成密集二维分子排列,然后与已标记的待测生物样品中靶分子反应,通过特定的仪器,比如激光扫描仪对反应信号的强度进行快速、并行、高效地检测分
微阵列芯片的应用
微阵列芯片是指采用光导原位合成或微量点样等方法,将大量生物大分子比如核酸片段、多肽分子甚至组织切片、细胞等生物样品有序地固化于支持物(如玻片、尼龙膜等载体)的表面,组成密集二维分子排列,然后与已标记的待测生物样品中靶分子反应,通过特定的仪器,比如激光扫描仪对反应信号的强度进行快速、并行、高效地检测分
微阵列的技术原理
微阵列(DNA Microarray)也叫寡核苷酸阵列(Oligonucleotide array),是人类基因组计划(Human Genome Project,HGP)的逐步实施和分子生物学的迅猛发展及运用的产物,它是生物学家受到计算机芯片制造和广为应用的启迪,融微电子学、生命科学、计算机科学和光
DNA微阵列技术特点
DNA微阵列技术最突出的特点就是可一次性检测多种样品,获得多种基因的差别表达图谱,已成功地运用cDNA微阵列同时检测l万多个基因的表达。因此,DNA微阵列是对不同材料中的多个基因表达模式进行平行对比分析的一种高产出的、新的基因分析方法。与传统研究基因差异表达的方法相比,它具有微型化、快速、准确、灵敏