分子荧光和分子磷光

分子和原子一样,也有它的特征分子能级,分子内部的运动可分为价电子运动、分子内原子在平衡位置附近的振动和分子绕其重心的转动。因此分子具有电子能级、振动能级和转动能级。 分子从外界吸收能量后,就能引起分子能级的跃迁,即从基态跃迁到激发态,分子吸收能量同样具有量子化的特征,即分子只能吸收等于二个能级之差的能量,符合:⊿E=E2-E1=hν=hc/λ 由于三种能级跃迁所需能量不同,所以需要不同波长的电磁辐射使它们跃迁,即在不同的光学区域出现吸收或发射谱带。 某些物质的分子吸收一定能量后,电子从基态跃迁到激发态,以光辐射的形式从激发态回到基态,这种现象称为分子发光,在此基础上建立起来的分析方法为分子发光分析法。 根据分子受激时所吸收能源及辐射光的机理不同分为: 光致发光:以光来激发而发光有分子荧光分析法和分总磷光分析法。 电致发光:以电能来激发而发光 生物发光:以生物体释放的能量激发而发光 化学发光:以化学反应能激发而......阅读全文

荧光分光光度计(分子荧光)

  1、基本原理   在室温下分子大都处在基态的最低振动能级,当受到光的照射时,便吸收与它的特征频率相一致的光线,其中某些电子由原来的基态能级跃迁到第一电子激发态或更高电子激发态中的各个不同振动能级,这就是在分光光度法中所述的吸光现象。跃迁到较高能级的分子,很快通过振动弛豫、内转换等方式释放能量后下

荧光分析法的荧光是如何产生的?

根据波兹曼 (Boltzmann)分布,分子在室温时基本上处于 电子能级的基态。当吸收了紫外-可见光后,基态分子中的电子只能跃迁到激发单重态的各个不同振动-转动能级,根据自旋禁阻选律, 不能直接跃迁到激发三重态的各个振动-转动能级。处于激发态的分子是不稳定的,通常以辐射跃迁和无辐射跃迁等方式释放多余

关于荧光分析法荧光的产生介绍

  根据波兹曼(Boltzmann)分布,分子在室温时基本上处于电子能级的基态。当吸收了紫外-可见光后,基态分子中的电子只能跃迁到激发单重态的各个不同振动-转动能级,根据自旋禁阻选律, 不能直接跃迁到激发三重态的各个振动-转动能级。  处于激发态的分子是不稳定的,通常以辐射跃迁和无辐射跃迁等方式释放

关于荧光分析法的荧光的产生介绍

  根据波兹曼 (Boltzmann)分布,分子在室温时基本上处于 电子能级的基态。当吸收了紫外-可见光后,基态分子中的电子只能跃迁到激发单重态的各个不同振动-转动能级,根据自旋禁阻选律, 不能直接跃迁到激发三重态的各个振动-转动能级。  处于激发态的分子是不稳定的,通常以辐射跃迁和无辐射跃迁等方式

荧光分析法荧光相关术语概念

根据波兹曼 (Boltzmann)分布,分子在室温时基本上处于 电子能级的基态。当吸收了紫外-可见光后,基态分子中的电子只能跃迁到激发单重态的各个不同振动-转动能级,根据自旋禁阻选律, 不能直接跃迁到激发三重态的各个振动-转动能级。处于激发态的分子是不稳定的,通常以辐射跃迁和无辐射跃迁等方式释放多余

荧光光谱能分析哪些东西

荧光是一种二次发光现象,其光谱分为原子荧光和分子荧光  原子荧光指的是原子外层电子被激发以后,回到低能级释放出的光子能量。理论上说,凡是能吸收能量的原子都能发生荧光现象。但是因为气化和激发能量的选择问题,从技术上现在比较成功的是对汞、砷、硒这三种原子的分析。而x射线原子荧光由于分光的问题则是只对钠以

荧光的产生

物质吸收光能后所产生的光辐射称之为荧光和磷光单重态和三重态。分子中的电子运动包括分子轨道运动和分子自旋运动,分子中的电子自旋状态,可以用多重态2S+1描述,S为总自旋量子数。若分子中没有未配对的电子,即S=0,则2S+1=1,称为单重态;若分子中有两个自旋方向平行的未配对电子,即S=1,则2S+1=

影响分子荧光强度因素

影响分子荧光强度因素有:1 )跃迁类型:只有π—π* 及 n —π*跃迁结构的分子才会产生荧光。而且π—π*跃迁的量子效率比 n —π*跃迁的要大得多(前者大、寿命短)。2 )共轭效应:共轭度越大,荧光越强。3 )刚性结构:分子刚性( Rigidity )越强,分子振动少,与其它分子碰撞失活的机率下

影响分子荧光强度因素

影响分子荧光强度因素有:1 )跃迁类型:只有π—π* 及 n —π*跃迁结构的分子才会产生荧光。而且π—π*跃迁的量子效率比 n —π*跃迁的要大得多(前者大、寿命短)。2 )共轭效应:共轭度越大,荧光越强。3 )刚性结构:分子刚性( Rigidity )越强,分子振动少,与其它分子碰撞失活的机率下

单分子荧光检测的介绍

单分子检测是近十年来迅速发展起来的一种超灵敏的检测技术,为分析化学工作者打开了一扇新的大门。单分子检测(SMD)及其分析是一个考察细胞系统内动力学变化以及物质相互作用的精妙方法。现在,人们不仅可以在溶液中对单个分子进行检测和成像,而且可以通过对单分子的光谱性质进行测量,从而对化学反应的途径进行实时监

影响分子荧光强度因素

影响分子荧光强度因素有:1 )跃迁类型:只有π—π* 及 n —π*跃迁结构的分子才会产生荧光。而且π—π*跃迁的量子效率比 n —π*跃迁的要大得多(前者大、寿命短)。2 )共轭效应:共轭度越大,荧光越强。3 )刚性结构:分子刚性( Rigidity )越强,分子振动少,与其它分子碰撞失活的机率下

分子荧光法测定蒽

分子荧光法测定蒽一、 实验目的1. 掌握荧光光度分析法的基本原理和方法以及荧光激发光谱和发射光谱的关系;2. 掌握荧光光谱仪的基本组成及使用方法;3. 掌握荧光光谱定量分析的基本方法。二、 实验原理处于基态的荧光物质分子吸收与其对应的特征电子能级相一致的光能后,将跃迁到能量较高的电子激发态。处于较高

稳态/瞬态荧光光谱仪(FLS920)操作说明书

一、仪器介绍1.FLS920稳态/瞬态荧光光谱仪具有两种功能稳态测量:激发光谱(荧/磷光强度~激发波长)、发射光谱(荧/磷光强度~发射波长)、同步扫描谱(固定波长差、固定能量差、可变角)。瞬态测量:荧光(磷光)寿命(100ps~10s)。适合各类液体和固体样品的测试。2.主要应用高分子和天然高分子自

稳态/瞬态荧光光谱仪(FLS920)操作说明书

一、仪器介绍1.FLS920稳态/瞬态荧光光谱仪具有两种功能稳态测量:激发光谱(荧/磷光强度~激发波长)、发射光谱(荧/磷光强度~发射波长)、同步扫描谱(固定波长差、固定能量差、可变角)。瞬态测量:荧光(磷光)寿命(100ps~10s)。适合各类液体和固体样品的测试。2.主要应用高分子和天然高分子自

稳态/瞬态荧光光谱仪(FLS920)操作说明书

一、仪器介绍1.FLS920稳态/瞬态荧光光谱仪具有两种功能稳态测量:激发光谱(荧/磷光强度~激发波长)、发射光谱(荧/磷光强度~发射波长)、同步扫描谱(固定波长差、固定能量差、可变角)。瞬态测量:荧光(磷光)寿命(100ps~10s)。适合各类液体和固体样品的测试。2.主要应用高分子和天然高分子自

原初反应转变的方式

①放热激发态的叶绿素分子在能级降低时以热的形式释放能量,此过程又称内转换(internal conversion)或无辐射退激(radiationless deexcitation)。如叶绿素分子从第一单线态降至基态或三线态,以及从三线态回至基态时的放热。这些都是无辐射退激。另外吸收蓝光处于第二单线

德国应用化学:有机室温磷光材料通用设计策略研究

   华东理工大学费林加诺贝尔奖科学家联合研究中心田禾院士和马骧教授团队设计了一种利用离子型聚合物外部重原子效应和刚性离子键网络的掺杂纯有机室温磷光(RTP)体系,构建了能直接从传统荧光染料出发,不经化学修饰设计磷光材料的普适策略。该成果近日发表于《德国应用化学》。  室温磷光是一种不同于荧光的发光

荧光猝灭效应的类型

1、碰撞猝灭碰撞猝灭是荧光猝灭的主要类型之一。它指的是处于激发单重态的荧光分子M1与猝灭剂分子Q相碰撞,使M1释放热量给环境,以无辐射的形式跃迁回基态,产生猝灭作用,这种猝灭也称动态猝灭。碰撞猝灭效应随温度的升高而增强,而随粘度的增大而降低。2、生成化合物的猝灭生成化合物的猝灭也称为静态猝灭,它指的

有机室温磷光材料研究获进展

原文地址:http://news.sciencenet.cn/htmlnews/2023/9/508147.shtm近日,华东理工大学化学与分子工程学院、费林加诺贝尔奖科学家联合研究中心田禾院士、马骧教授团队在室温磷光材料构建方面取得新进展,相关成果分别在《美国化学会志·金》和《材料研究述评》上发表

宁波材料所报道镧系金属配位精准调控有机室温磷光材料性能的策略

  室温磷光(RTP)是独特的光物理现象。RTP相关材料在撤去激发光源后,可以持续数秒到几小时的长寿命发射。RTP材料拥有较大的斯托克斯位移和长发光寿命等特性,在信息加密、生物成像、化学传感等领域具有应用前景。与广泛应用的荧光标签相比,RTP材料具有额外的时间维度和更丰富的光学可调性,在多级信息编码

有机室温磷光研究获系列进展

近日,华东理工大学化学与分子工程学院教授马骧团队在寿命可调型室温磷光材料研究方面取得新进展,为开发超宽范围可调谐寿命和高效持久的深蓝色室温磷光材料提供了一种简便的策略。相关成果发表于《德国应用化学》。 高效室温磷光因其大斯托克斯位移和高信噪比效应而广泛应用于生物成像、光电信息显示、传感器和信息防伪应

有机室温磷光研究获系列进展

近日,华东理工大学化学与分子工程学院教授马骧团队在寿命可调型室温磷光材料研究方面取得新进展,为开发超宽范围可调谐寿命和高效持久的深蓝色室温磷光材料提供了一种简便的策略。相关成果发表于《德国应用化学》。 高效室温磷光因其大斯托克斯位移和高信噪比效应而广泛应用于生物成像、光电信息显示、传感器和信息防伪应

原初反应吸收与传递激发态

激发态是不稳定的状态,经过一定时间后,就会发生能量的转变,转变的方式有以下几种:①放热激发态的叶绿素分子在能级降低时以热的形式释放能量,此过程又称内转换(internal conversion)或无辐射退激(radiationless deexcitation)。如叶绿素分子从第一单线态降至基态或三

荧光光谱仪单分子荧光检测方法分析

  单分子荧光检测。单分子荧光分析是实现单分子检测最灵敏的光分析技术。单分子荧光检测的关键在于确保被照射的体积中只有一个分子与激光发生作用以及消除杂质荧光的背景干扰。单分子荧光检测可提供单分子水平上生物分子反应的动力学信息,分子构象以及构象随时间的变化,因此尤其在生命科学领域中具有广阔的应用前景,为

分子荧光光度法测定二氯荧光素

分子荧光光度法测定二氯荧光素实验实验中修改部分一、实验目的:1、(书)          2、掌握荧光分光光度计的结构及基本使用方法          3、熟悉荧光分光光度计的应用二、方法原理:(书)三、仪器和试剂:仪器:Cary/Eclipse荧光分光光度计。该仪器使用氙弧灯作为激发光源。在190

为什么分子荧光光度的灵敏度比分子吸光光度法高

因为与分子吸光光度法比较,萤光是从入射光的直角方向检测,即在黑暗背景下检测荧光的发射。分子吸光光度法中有入射光的背景干扰,因而分子荧光分析法的灵敏度通常比分子吸光光度法的要高2——4个数量级。荧光或磷光分析法是在入射光的直角方向测定荧光强度,即在黑背景下进行检测,因此可以通过入射光强度i或者增大荧光

分子荧光光谱核心技术

  光源:由于荧光样品的荧光强度与激发光的强度成正比,因此,作为一种理想的激发光源应具备:足够的强度、在所需光谱范围内有连续的光谱、强度与波长无关(即光源的输出是连续平滑等强度的辐射)、稳定的光强。常用的光源主要有氙灯,激光器等。  探测器: 荧光的强度通常比较弱,因此要求检测器有较高的灵敏度。一般

分子荧光光谱分析

分子荧光光谱分析编辑molecular fluorescence analysis当物质分子吸收了特征频率的光子,就由原来的基态能级跃迁至电子激发态的各个不同振动能级。激发态分子经与周围分子撞击而消耗了部分能量,迅速下降至第一电子激发态的最低振动能级,并停留约10-9秒(10的负9次方秒)之后,直接

分子荧光光谱实验报告

一、实验目的:    1.掌握荧光光度法的基本原理及激发光谱、发射光谱的测定方法;学会运用分子荧光光谱法对物质进行定性分析。    2.了解荧光分光光度计的构造和各组成部分的作用。    3.了解影响荧光产生的几个主要因素。二、实验内容:    测定荧光黄/水体系的激发光谱和发射光谱;    首先根

分子荧光分析法的应用

1.特点荧光分子所处的外部化学环境对荧光强度有直接影响.选择合适的条件不但可以使荧光加强.提高测定的灵敏度.同时.还可以控制干扰物质的荧光产生.改善分析的选择性。分了荧光分析法具有如下特点:(l)灵敏度高.山于是在黑背景下测定荧光发射强度一般而言,分子荧光分析法的灵敏度比紫外一可见吸收光洪分析法高2