Antpedia LOGO WIKI资讯

智能纳米颗粒自控温“烫死”癌细胞

大连理工大学教授吴承伟团队研发出一种新智能纳米颗粒,不仅可追踪癌细胞,还能自我调节温度,自动升温到可杀死癌细胞的温度,而在杀死癌细胞后,会在伤害健康组织前自动散去热量,实现了自控温“烫死”癌细胞。相关成果近日发表于《纳米尺度》杂志。 研究发现肿瘤细胞在40℃~45℃会凋亡,而正常细胞温度耐受性一般要高4℃~5℃。研究人员发明了一种新型“自控温开关”,实现磁感应热疗温度的自动准确控制,热疗极限温度可根据需要控制在任意温度(30℃~70℃)。当温度高于设定治疗温度时,这种“开关”会自动关闭,停止加热;当温度低于设定治疗温度,“开关”会自动开启,开始加热,通过“开关”的自动循环转换,将肿瘤局部温度精准地控制在设定的治疗温度。这种新型“开关”的使用,不但可避免在肿瘤磁热疗过程中使用复杂、昂贵的测温、控温系统,而且实现了自动、安全、精准控温。 相对于放疗和化疗的强毒副作用,低强度磁场对人体细胞和组织具有无害性。而且磁场的......阅读全文

智能纳米颗粒自控温“烫死”癌细胞

   大连理工大学教授吴承伟团队研发出一种新智能纳米颗粒,不仅可追踪癌细胞,还能自我调节温度,自动升温到可杀死癌细胞的温度,而在杀死癌细胞后,会在伤害健康组织前自动散去热量,实现了自控温“烫死”癌细胞。相关成果近日发表于《纳米尺度》杂志。   研究发现肿瘤细胞在40℃~45℃会凋亡,而正常细

热水“烫死”癌细胞?是真的!

  日前,一项由哈佛大学参加,北京301医院、天津肿瘤医院、广州医科大学附属肿瘤医院等国内有15家医院参与的“胃癌根治手术联合腹腔热灌注治疗的多中心临床研究”向社会招募600例胃癌病人的消息引起了业界和众多患者的关注。   恶性肿瘤患者最怕听到的是“转移”二字。而偏偏大部分中晚期腹腔恶性肿瘤会发

PNAS:携带siRNA纳米颗粒可抑制肺癌细胞

  RNA干扰(RNAi)是一种很有前途的方法,可以用来作为针对人体不同疾病(如癌症)的治疗策略。然而,在体内,如何将小分子siRNA转移到肿瘤或者癌细胞聚集的区域一直是很难的课题。通过一种高效的自组装系统,来自美国哈佛医学院和中国四川大学华西医学院的课题组,发展了一套独特的纳米颗粒平台,通过由固

ACS Nano:借助纳米颗粒可实现肝癌细胞成像

  在多数的恶性肝脏肿瘤的治疗中,手术切除都是第一线的治疗方案。在肝脏肿瘤切除手术中,如果能更精细地区分肿瘤和正常组织的边缘,以及能够观测到微观损伤的区域,对于成功的肿瘤切除手术非常重要。美国纽约纪念斯隆-凯特琳癌症中心的Moritz F. Kircher博士领导的课题组,合成了一种硅包被、表面增

ACS Nano:利用超级磁性纳米颗粒迫使癌细胞“自我毁灭”

  使用磁性控制纳米粒子,迫使肿瘤细胞“自我毁灭”,这听起来像是科幻小说,但根据来自瑞典Lund大学的一项研究证实:这可能是癌症治疗的未来。   Erik Renstrm教授说:关于这项技术的巧妙之处是,我们可以针对选定的细胞,而不伤害周围组织。新技术比试图杀死癌细胞如化疗技术等,更

自控温电伴热带是怎样调节和控制温度

,这时候我们需要切断电源吗?北京中海华光电伴热提醒大家,电伴热带工作时需要持续供电,不需要切断电源,下面再介绍一下它的工作方式。冬季气候寒冷现象愈发严重,,尤其是以北方地区为主,如黑龙江、新疆、哈尔滨等地。天气寒冷导致民用水管道/箱或者工业类管道和罐体内的液体、气体凝固,无法正常运作,更多的用户开始

伯纳德自控智能电动执行器原理介绍

  伯纳德自控公司的电动执行机构用于把阀门 驱动至全开或全关的位置。用于控制阀 的执行机构能够的使阀门走到任何位置。尽管大部分执行机构都是用于开关阀门,但是如今的执行机构的设计远远超出了简单的开关功能,它们包含了位置感应装置,力矩感应装置,电极保护装置,逻辑控制装置,数字通讯模块及PID控制模块等

热敏型化疗纳米颗粒可有效杀灭95%的卵巢癌细胞

  根据俄勒冈州立大学最新研究成果显示,一种纳米颗粒包载的化疗药物对卵巢癌细胞有显着治疗效果。研究人员利用氧化铁纳米颗粒包载化疗药物阿霉素并将其输送至癌症部位,然后待其进入癌症组织后对纳米颗粒进行加热,最后结果令人惊讶,实验中95%的癌症细胞被杀灭。   该项目的研究人员表示,这一发现令人振

本应杀死癌细胞的纳米颗粒实际上可能促进癌症转移

  纳米颗粒能够在加工食品(比如食品添加剂)、消费品(比如防晒剂)甚至在药物中发现到。在一项新的研究中,来自新加坡国立大学(NUS)研究人员发现虽然这些微小的颗粒可能具有巨大的未开发潜力和新的应用,但是它们可能会产生意想不到的有害副作用。具体而言,他们发现旨在杀死癌细胞的癌症纳米药物可能会加快癌细胞

新型光控聚乙二醇(PEG)剥离型智能纳米颗粒

  中国科学院高能物理研究所多学科中心生物医学组近期发展了一种新型光控聚乙二醇(PEG)剥离型智能纳米颗粒,并将其用于增强肿瘤细胞靶向和深度渗透的研究。论文近期发表在Nano Letters(DOI: 10.1021/acs.nanolett.9b00737)上。   小分子药物通常不具备特异性