Antpedia LOGO WIKI资讯

Science子刊:阻断这两个信号通路,或有望消除白血病

急性骨髓性白血病(AML)因其容易复发,每年全世界大约有25万人死于这一疾病。一个令人振奋的好消息是,科学家最新研究发现,同时靶向FLT3-ITD和BCL-2这两个重要的信号通路,或有望彻底消除白血病。 图片来源网络 容易复发一直是AML最棘手的问题,这在大多数接受化疗的患者身上都会发生。过去近10年里,科学家们已经认识到,白血病干细胞(LSCs)会导致复发,因为它们可以在化疗药物的冲击下存活,并且增殖。 日本理化学研究所(RIKEN)的科学家一直试图找出可以靶向这些干细胞的化合物。功夫不负有心人,2013年,他们宣布发现了名为“RK-20449”的化合物,可以靶向某一类型的酪氨酸激酶受体,而这类受体在骨髓和血液里的细胞(比如引起白血病的细胞)的信号传导中起重要的作用。 近日,该研究小组又传来好消息。他们与国际合作者研究发现,在人源化小鼠中,同时靶向FLT3-ITD和BCL-2这两个重要的信号通路,可......阅读全文

Science子刊:阻断这两个信号通路,或有望消除白血病

  急性骨髓性白血病(AML)因其容易复发,每年全世界大约有25万人死于这一疾病。一个令人振奋的好消息是,科学家最新研究发现,同时靶向FLT3-ITD和BCL-2这两个重要的信号通路,或有望彻底消除白血病。   图片来源网络   容易复发一直是AML最棘手的问题,这在大多数接受化疗的患者身上都会

Science子刊:消除测序偏好的有效方法

  苏黎世联邦理工学院(ETH Zurich)的研究人员开发了确保测序质量的有效方法,并在此基础上获得了全面且准确的抗体图谱。这项研究发表在最近的Science Advances杂志上。  为了跟踪免疫系统激活后的抗体生成情况,研究人员对携带抗体生产指令的mRNA进行了测序分析。“近年来测序技术取得

Science子刊:消除测序偏好的有效方法

  苏黎世联邦理工学院(ETH Zurich)的研究人员开发了确保测序质量的有效方法,并在此基础上获得了全面且准确的抗体图谱。这项研究发表在最近的Science Advances杂志上。  为了跟踪免疫系统激活后的抗体生成情况,研究人员对携带抗体生产指令的mRNA进行了测序分析。“近年来测序技术取得

Science子刊揭示植物新型信号机制

  植物具有与人类和动物大脑中谷氨酸受体相似的受体。然而近日来自德国波鸿鲁尔大学的生物化学家,与来自维尔茨堡大学和中国农业大学的同事们,发现这些受体并不识别谷氨酸,而是其他很多不同的氨基酸。该研究小组将这一研究发现报告在《科学信号》(Science Signaling)杂志上。   在拟南芥中

Science子刊揭示:阻断癌细胞能量来源的新靶标

  相比于正常细胞,癌细胞分裂无节制,且易于扩散、转移,所以需要消耗更多的葡萄糖。科学家们希望通过阻断它们的能量来源,从而对抗肿瘤。实现这一目标需要了解癌细胞利用葡萄糖的细节。近日,有研究表明,一种不被重视的转运蛋白在肺癌利用葡萄糖中发挥着重要作用。 图片来源:USC Norris Comp

Science子刊:抑制DHODH有望治疗小细胞肺癌

  小细胞肺癌是一种极具侵袭性的肺癌,具有有限的治疗选择。在一项新的研究中,来自美国麻省理工学院的研究人员鉴定出这种类型肺癌的一种新型治疗靶标。相关研究结果发表在2019年11月6日的Science Translational Medicine期刊上,论文标题为“Identification of

PNAS:阻断Notch信号有望恢复听力

  感觉毛细胞缺失是听力损失和平衡障碍的主要原因。产后哺乳动物内耳祖细胞具有再生毛细胞和恢复听觉的潜能,但控制其增殖和毛细胞再生的机制仍有待确定。  科学家已经表明阻断Notch途径(已知能操控内耳复杂毛细胞的分布)在决定耳蜗祖细胞增殖能力中起着至关重要的作用。他们的研究成果发表在PNAS杂志上。 

PNAS:阻断Notch信号有望恢复听力

  感觉毛细胞缺失是听力损失和平衡障碍的主要原因。产后哺乳动物内耳祖细胞具有再生毛细胞和恢复听觉的潜能,但控制其增殖和毛细胞再生的机制仍有待确定。  科学家已经表明阻断Notch途径(已知能操控内耳复杂毛细胞的分布)在决定耳蜗祖细胞增殖能力中起着至关重要的作用。他们的研究成果发表在PNAS杂志上。 

Science子刊:金属暴露或导致帕金森综合征

  爱荷华州立大学生物医学研究人员的一项新研究发现,暴露于某些金属可能会导致帕金森综合征发作。  锰是一种重要的矿物质,微量锰对人体的正常功能是必要的,但是过多的锰暴露与神经症状有关,就像帕金森氏症患者的症状一样。因为锰在脑组织中积累的趋势,自从20世纪50年代以来,研究人员就注意到锰与神经系统疾病

中科院团队Nature子刊揭示新信号通路

  开花植物的种子会在不利条件下保持休眠状态,等到条件有利的时候再萌发,生成一个新的植株。种子的休眠和萌发受到内部和外部信号的严格控制。虽然人们知道光敏色素调控初级种子休眠,但还不清楚其中的分子机制。  中科院植物研究所的科学家们八月十日在Nature Communications杂志上发表文章,揭