离子液体中硅化锂电极的锂化/脱锂
锂离子电池应用广泛,其性能尚有提升空间。硅电极由于其较高理论容量成为了新型锂离子电池电极研究对象。 东京大学Hiroki Sakaguchi等研究者研究了Li1.00Si电极在离子液体电解质中的锂化和脱锂情况。Li1.00Si电极在有机液体电解质中显示出高库伦效率CE和低开路电压OCP,但在离子液体电解质中显示出低CE和高OCP。Raman光谱和XRD分析表明,Li1.00Si浸入离子液体电解液中即发生硅化相变(锂脱离晶格)。SXES表明Li1.00Si中16%的Li发生了解吸。此外,ICP-AES和EDS表明,Li1.00Si中的Li没有洗脱到电解液中,而是形成表面膜。相反,在有机液体电解质中没有观察到这些现象。在离子液体电解质中加入碳酸乙烯酯VC和碳酸氟乙烯酯FEC抑制了Li1.00Si向Si的相变,并且在添加VC的电解液中具有较高的CE和较长的循环寿命。......阅读全文
离子液体中硅化锂电极的锂化/脱锂
锂离子电池应用广泛,其性能尚有提升空间。硅电极由于其较高理论容量成为了新型锂离子电池电极研究对象。 东京大学Hiroki Sakaguchi等研究者研究了Li1.00Si电极在离子液体电解质中的锂化和脱锂情况。Li1.00Si电极在有机液体电解质中显示出高库伦效率CE和低开路电压OCP,但在离
氟电极法测定硅铁试样中的硅
一、方法要点硅铁试样先经碱熔,随后用热水及HCl浸取,定容后,吸取部分试液放入50mL烧杯中,在微酸性介质中,用过量KF(或NaF+KCl)溶液沉淀硅酸为K2SiF6,然后用氟电极法测定溶液中NaF的余量来换算硅的含量。在掩蔽剂存在下,可以排除共存的Fe3+、Al3+、Mn2+、Ni2+等离子的干扰
无水氯化锂--氯化锂(质量分数)的测定
本标准规定了无水氯化锂产品的分类、要求、试验方法、检验规则和标志、包装、运输、贮存等。 本标准适用于以碳酸锂、单水氢氧化锂或含锂卤水为原料,采用转化法制得的无水氯化锂。该产品供焊接、材料、空调设备及制取金属锂等用。 要求 产品分类 产品按化学成分分为三个牌号: LiCl-
锂离子超级电容器-预补锂新技术
氮化锂是一种备受关注的正极预锂化添加剂, 可用于弥补在首次充电过程中发生在负极侧的不可逆锂损失, 从而提高储能器件的比能量。但是, 在电极制造过程中, 氮化锂与N-甲基-2-吡咯烷酮(NMP)、二甲基亚砜(DMSO)、乙腈(CAN)、N,N-二甲基乙酰胺(DMAC)等常用溶剂会发生副反应, 使含
李灿:硅基光电极中界面特征对性能的影响
近日,中国科学院大连化学物理研究所李灿院士、副研究员姚婷婷等在光电催化分解水研究方面取得重要进展,以单晶硅光电极为模型,识别了金属—氧化物—半导体(MOS)结构光阳极中制约其性能的关键界面因素,并针对性地引入相关界面调控策略,有效地促进了光生电荷分离提取和利用效率,实现了对光电转化器件的理性设计
研究揭示硅基光电极中界面特征对性能的影响
近日,中国科学院大连化学物理研究所李灿院士、副研究员姚婷婷等在光电催化分解水研究方面取得重要进展,以单晶硅光电极为模型,识别了金属—氧化物—半导体(MOS)结构光阳极中制约其性能的关键界面因素,并针对性地引入相关界面调控策略,有效地促进了光生电荷分离提取和利用效率,实现了对光电转化器件的理性设计和优
我所揭示硅基光电极中界面特征对性能的影响
近日,我所太阳能研究部(DNL16)李灿院士、姚婷婷副研究员等在光电催化分解水研究方面取得重要进展,以单晶硅光电极为模型,识别了金属—氧化物—半导体(MOS)结构光阳极中制约其性能的关键界面因素,并针对性地引入相关界面调控策略,有效地促进了光生电荷分离提取和利用效率,实现了对光电转化器件的理性设
锂电材料氟化锂的简介
氟化锂,是一种无机化合物,化学式为LiF,是碱金属卤化物,室温下为白色粉末,微溶于水,不溶于醇,溶于酸,主要用作波长分析型X射线荧光光谱仪中的分析晶体,还用作干燥剂、助熔剂,也可用于搪瓷工业,光学玻璃制造等。 化学式:LiF 分子量:25.939 CAS号:7789-24-4 EINEC
《自然·通讯》超弹聚合物解决硅基电极“自由”胀裂难题
万物非完美,对于电子时代的锂离子电池亦不例外。 研发高电量的可充电电池需使用可存储大量电荷(即高电容量)的电极材料,如硅单质和一氧化硅(SiO)颗粒。然而,硅基材料在电池充电过程中由于Li+迁入使得体积剧烈膨胀,而在放电过程中因Li+迁出体积又会显著缩小。如此大幅、反复的体积变化将导致活性颗粒
简述氟化锂的理化性质
物理性质 熔点:848℃ 密度:2.64g/cm3 沸点:1681℃ 折射率:1.3915 外观:白色粉末 溶解性:微溶于水,不溶于醇,溶于酸 [2-3] 化学性质 可溶于氢氟酸而生成氟化氢锂:LiF+HF→LiHF2。
简述氧化锂的制备方法
粗略制法 1、可由金属锂直接在氧气中燃烧生成氧化锂: Li + O2→ Li2O 2、也可以在氦气流中加热过氧化锂至450℃得到: 2Li2O2→ 2Li2O + O2 3、在氢气氛中将碳酸锂、硝酸锂或氢氧化锂加热到800℃都可以制得氧化锂: Li2CO3→ Li2O + CO2
无水碘化锂--水分含量的测定
YS/T 1244-2018 无水碘化锂 范围 本标准规定了无水碘化锂的要求、试验方法、检验规则以及标志、包装、运输、贮存、质量证明书、订货单(或合同)的内容。 本标准适用于以各种方法生产的无水碘化锂。 要求 产品分类 无水碘化锂按化学成分分为三个牌号: Li
怎样检测硅铁的硅含量
检测硅铁的硅含量最简单的方法是:重量法测定硅铁中硅含量。在重量法测定硅含量中,又具体分为三种方法,即:1、 高氯酸脱水重量法测定硅量;2、 盐酸脱水重量法测定硅量;3、 挥硅减量重量法。硅铁的硅含量的测定方法有多种。用以测定硅铁合金中硅测定的化学分析方法主要有重量法和氟硅酸钾容量法。现代仪器分析中,
苏州纳米所硫化锂电池原位电镜表征等研究获进展
随着社会和科技的发展,人类对电化学储能技术的需求日益增加,新兴储能系统——锂硫电池具有理论容量高、成本低、环境友好等优点,备受国内外研究者的关注。而研发高容量锂硫电池正极材料,对推动新能源动力汽车、便携式电子设备等领域的发展至关重要。 硫化锂(Li2S)材料理论容量高达1166 mA h g-
氢氧化锂是什么?氢氧化锂的特性和用途介绍
氢氧化锂是一种白色单斜细小结晶。氢氧化锂带有有辣味,具强碱性。氢氧化锂置放在在空气中,它会吸收二氧化碳和水分。它是一种溶于水的化学物质,氢氧化锂微溶于乙醇,不溶于乙醚,是一种由有腐蚀性的物质。氢氧化锂的特性氢氧化锂是一种无机物,化学式为LiOH,英文名为Lithium hydroxide,是白色单斜
国内温湿度测量领域与发展动态
随着国内科技发展,进入21世纪后,特别在我国加入WTO后,国内产品面临巨大挑战。各行业特别是传统产业都急切需要应用电子技术、自动控制技术进行改造和提升。例如纺织行业,温湿度是影响纺织品质量的重要因素,但纺织企业对温湿度的测控手段仍很粗糙,十分落后,绝大多数仍在使用干湿球湿度计,采用人工观测,人工调节
化学所锂电池硅基负极研究取得进展
在实现碳达峰和碳中和目标的背景下,开发高能量密度、长寿命的锂离子电池至关重要。相较于传统石墨负极,具有更高理论比容量的硅基材料被认为是颇有前景的锂离子电池负极材料。然而,硅基负极在充放电时存在较大的体积变化,并伴随有材料结构粉化和电极/电解质间的界面副反应,限制了其循环寿命。因此,优化硅基材料的结构
简述锂电材料氟化锂的消防措施
危险特性:遇酸分解,放出腐蚀性的氟化氢气体。遇高热分解出高毒烟气。 有害燃烧产物:氟化氢、氧化锂。 灭火方法:消防人员必须穿全身防火防毒服,在上风向灭火。灭火时尽可能将容器从火场移至空旷处。然后根据着火原因选择适当灭火剂灭火。
关于氟化锂的基本信息介绍
氟化锂,是一种无机化合物,化学式为LiF,是碱金属卤化物,室温下为白色粉末,微溶于水,不溶于醇,溶于酸,主要用作波长分析型X射线荧光光谱仪中的分析晶体,还用作干燥剂、助熔剂,也可用于搪瓷工业,光学玻璃制造等。 化学式:LiF 分子量:25.939 CAS号:7789-24-4 EINEC
简述锂电材料氟化锂的急救措施
皮肤接触:立即脱去污染的衣着,用大量流动清水冲洗。就医。 眼睛接触:提起眼睑,用流动清水或生理盐水冲洗。就医。 吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。 食入:饮足量温水,催吐。就医。
氢氧化锂的用途
氢氧化锂可用做光谱分析的展开剂、润滑油。碱性蓄电池电解质的添加剂,可增加电池容量12%~15%,提高使用寿命2~3倍。可用做二氧化碳的吸收剂,可净化潜艇内的空气,化学方程式为:2LiOH(s)+CO2(g)=Li2CO3(s)+H2O(l)。用于制锂盐及锂基润滑脂,碱性蓄电池的电解液,溴化锂制冷机吸
锂电池材料溴化锂的简介
溴化锂,是一种无机物,分子式为LiBr,白色立方晶系结晶或粒状粉末,极易溶于水,溶于乙醇和乙醚,微溶于吡啶,可溶于甲醇、丙酮、乙二醇等有机溶剂。 它是一种高效的水蒸气吸收剂和空气湿度调节剂。可用作吸收式制冷剂,有机化学中的氯化氢脱除剂、纤维蓬松剂,医药上的催眠剂和镇静剂,还用于感光工业、分析化学
氢氧化锂的特性
氢氧化锂是一种白色单斜细小结晶。氢氧化锂带有有辣味,具强碱性。氢氧化锂置放在在空气中,它会吸收二氧化碳和水分。它是一种溶于水的化学物质,氢氧化锂微溶于乙醇,不溶于乙醚,是一种由有腐蚀性的物质。
氟化锂的操作处置与储存介绍
操作注意事项:密闭操作,局部排风。防止粉尘释放到车间空气中。操作人员必须经过专门培训,严格遵守操作规程。建议操作人员佩戴自吸过滤式防尘口罩,戴化学安全防护眼镜,穿防毒物渗透工作服,戴橡胶手套。避免产生粉尘。避免与氧化剂、酸类接触。配备泄漏应急处理设备。倒空的容器可能残留有害物。 储存注意事项:
毕氏酵母氯化锂转化法
试剂1M LiCl 50% PEG3350 (氯化锂转化法只能PEG3350,不能用PEG8000,PEG3350在北京莱博生物有售,80元/100克)2mg/ml salmon sperm DNA / TE(10mM Tris-Cl, pH8.0, 1.0mM EDTA)-20℃保存注:醋酸锂对毕
锂电材料氟化锂的理化性质
物理性质 熔点:848℃ 密度:2.64g/cm3 沸点:1681℃ 折射率:1.3915 外观:白色粉末 溶解性:微溶于水,不溶于醇,溶于酸 [2-3] 化学性质 可溶于氢氟酸而生成氟化氢锂:LiF+HF→LiHF2。
化学所锂电池硅基负极研究取得进展
在实现碳达峰和碳中和目标的背景下,开发高能量密度、长寿命的锂离子电池至关重要。相较于传统石墨负极,具有更高理论比容量的硅基材料被认为是颇有前景的锂离子电池负极材料。然而,硅基负极在充放电时存在较大的体积变化,并伴随有材料结构粉化和电极/电解质间的界面副反应,限制了其循环寿命。因此,优化硅基材料的结构
中大钱果裕/北大杨卢奕CRPS:商业化负极失效检测技术大起底
产业背景 2023全年,受益于下游新能源汽车、储能等终端市场的高速增长态势,全球负极材料产量保持20%以上的同比增速,总出货量167.95万吨,其中中国占比高达95%,稳居世界最大负极材料供应国。 目前的商业化锂电池负极材料市场中,碳基材料(石墨等)占据绝对主导地位,市场占比达90%以上
二维层状粘土材料在锂硫电池中的应用获进展
11月18日,记者从广东省科学院化工研究所获悉,该所电子信息材料研究团队在基于二维层状粘土材料的高性能锂硫电池正极研究中取得新进展。相关研究相继发表于Nanotechnology Reviews、ChemSusChem。 电动汽车和电网储能等新兴技术的快速发展对二次电池的能量密度提出了更高的要
锂离子电池的主要的负极材料的介绍
锂离子电池负极材料以石墨类材料为主,主要包括人造石墨、天然石墨、软/硬碳和中间相碳微球、钛酸锂;正在研究中的负极材料有钛氧化物、锡与碳的复合物、硅的复合物,碳纳米管、石墨新型材料。 天然石墨的资源丰富、成本低,自身的片层结构可以实现锂离子的可逆脱嵌;人造石墨制备技术成熟,且制备过程中二次粒子的