铂类抗癌药物体内药物浓度的电热原子吸收光谱分析

摘 要 应用电热原子吸收光谱分析技术(EAA S) 对血浆、尿液、胆汁及各种组织中的总铂的含量进行了测定。研究表明, 经合理的原子化程序设定后, 尿液和胆汁可以不加处理直接进样, 血浆用0. 25% T ritonX2100等量稀释, 组织只采用简单快捷的均相酸消化法。本方法精密度RSD< 10% , 回收率87. 40%~ 110. 0% , 在0. 08~5. 00 Lgöm l 铂浓度范围线性关系良好, 相关系数r> 0. 9962, 适合于铂类药物药代动力学的研究。点击这里进入下载页面:进入下载页面......阅读全文

原子吸收光谱仪AAS石墨炉原子吸收法直接测定尿铅

 [目的] 建立石墨炉原子吸收光度法直接测定尿铅的方法。[方法] 比较了二氯化钯、硝酸镁-磷酸二氢铵分别作基体改进剂的不同效果;测定了尿样不同稀释比例对结果的影响;试验出了zui佳升温程序。[结果]尿样经1:1稀释后,加入5μl浓度为100mg/l二氯化钯溶液作基体改进剂,采用横向加热石墨管、纵向交

原子吸收光谱仪AAS石墨炉原子吸收法直接测定尿铅

原子吸收光谱仪AAS-石墨炉原子吸收法直接测定尿铅摘要 [目的] 建立石墨炉原子吸收光度法直接测定尿铅的方法。[方法] 比较了二氯化钯、硝酸镁-磷酸二氢铵分别作基体改进剂的不同效果;测定了尿样不同稀释比例对结果的影响;试验出了zui佳升温程序。[结果]尿样经1:1稀释后,加入5μl浓度为100mg/

原子吸收光谱法测定尿铅的应用

  [摘要]本文主要介绍了原子吸收光谱法的发展概况,并根据铅的毒性特点进行尿铅的测定,同时应用基体改进技术和背景校正技术降低背景吸收干扰,提高该方法的可靠性。从而为职业性铅中毒的筛选提供一种简便快速的测定方法,为职业病的防治作出一点贡献。   自1953年澳大利亚物理学家沃尔什(A.Walsh)首先

原子吸收AAS元素分析方法铂Pt

原子吸收AAS--元素分析方法--铂Pt1. 基本特性:   原子量 195.09   电离电位 9.0 (ev)2. 样品处理:   HNO3+HCL; HF+HNO3; HNO3+HCLO4.3. 分析条件   分析线 265.9 nm   狭缝 0.4 nm   空心阴极灯电流(w) 2.0

原子吸收AAS元素分析方法铂Pt

1. 基本特性:   原子量 195.09   电离电位 9.0 (ev)2. 样品处理:   HNO3+HCL; HF+HNO3; HNO3+HCLO4.3. 分析条件   分析线 265.9 nm   狭缝 0.4 nm   空心阴极灯电流(w) 2.0 mA4. 干扰:   光谱干扰:    

原子发射光谱、原子吸收光谱

  原子吸收光谱是原子发射光谱的逆过程。基态原子只能吸收频率为ν=(Eq-E0)/h的光,跃迁到高能态Eq。因此,原子吸收光谱的谱线也取决于元素的原子结构,每一种元素都有其特征的吸收光谱线。  原 子的电子从基态激发到最接近于基态的激发态,称为共振激发。当电子从共振激发态跃迁回基态时,称为共振跃迁。

石墨炉原子吸收光谱法直接测定尿中镉

1 实验部分1.1仪器PerkinElmer800原子吸收分光光度计;YY3平台石墨管(金属涂层 自制);塞曼效应扣除背景。仪器工作条件见表1。 表1 仪器工作条件①波长l/nm灯电流I/mA狭缝b/nm载气氩mL/min干燥灰化清除原子化干燥1温度时间干燥2温度时间灰化温度时间原子化温度时间清除温

石墨炉原子吸收光谱法直接测定尿中镉

1 实验部分1.1仪器PerkinElmer800原子吸收分光光度计;YY3平台石墨管(金属涂层 自制);塞曼效应扣除背景。仪器工作条件见表1。 表1 仪器工作条件①波长l/nm灯电流I/mA狭缝b/nm载气氩mL/min干燥灰化清除原子化干燥1温度时间干燥2温度时间灰化温度时间原子化温度时间清除温

原子吸收光谱和原子发射光谱区别

原子吸收光谱是原子发射光谱的逆过程。基态原子只能吸收频率为ν=(Eq-E0)/h的光,跃迁到高能态Eq。因此,原子吸收光谱的谱线也取决于元素的原子结构,每一种元素都有其特征的吸收光谱线。   原 子的电子从基态激发到最接近于基态的激发态,称为共振激发。当电子从共振激发态跃迁回基

原子吸收光谱和原子发射光谱区别

      原子吸收光谱是原子发射光谱的逆过程。基态原子只能吸收频率为ν=(Eq-E0)/h的光,跃迁到高能态Eq。因此,原子吸收光谱的谱线也取决于元素的原子结构,每一种元素都有其特征的吸收光谱线。  原子的电子从基态激发到最接近于基态的激发态,称为共振激发。当电子从共振激发态跃迁回基态时,称为共振

原子吸收光谱和原子发射光谱区别

  原子吸收光谱是原子发射光谱的逆过程。基态原子只能吸收频率为ν=(Eq-E0)/h的光,跃迁到高能态Eq。因此,原子吸收光谱的谱线也取决于元素的原子结构,每一种元素都有其特征的吸收光谱线。  原 子的电子从基态激发到最接近于基态的激发态,称为共振激发。当电子从共振激发态跃迁回基态时,称为共振跃迁。

原子吸收光谱和原子发射光谱区别

原子吸收光谱和原子发射光谱区别如下:吸收光谱和发射光谱都是线谱,区别在于前者显示黑色线条,而发射光谱显示光谱中的彩色线条。发射光谱:给样品以能量,比如原子发射光谱,原子外层电子由基态到激发态,处于激发态电子不稳定,会以光辐射的形式是放出能量,而回到基态或较低的能级.得到线状光谱。吸收光谱:用一定波长

火焰原子吸收光谱法与原子吸收光谱的区别

火焰是指原子化的方法,与之对应的还有石墨炉原子化法;原子吸收光谱是光源经原子化器后与元素对应谱线被吸收后再经分光系统分光色散后形成的光谱。

原子吸收光谱和原子发射光谱的异同

从本质上说都是经由原子的能级跃迁产生的。不同的是原子发射光谱研究的是待测元素激发的辐射强度,原子吸收光谱法是研究原子蒸气对光源共振线的吸收强度,是吸收光谱。原子荧光是研究待测元素受激发跃迁所发射的荧光强度,虽激发方式不同,仍属于发射光谱。因为原子荧光光谱法既有原子发射光谱和吸收的特点所以具有二者的优

原子吸收光谱和原子发射光谱的异同

从本质上说都是经由原子的能级跃迁产生的。不同的是原子发射光谱研究的是待测元素激发的辐射强度,原子吸收光谱法是研究原子蒸气对光源共振线的吸收强度,是吸收光谱。原子荧光是研究待测元素受激发跃迁所发射的荧光强度,虽激发方式不同,仍属于发射光谱。因为原子荧光光谱法既有原子发射光谱和吸收的特点所以具有二者的优

浅谈原子吸收光谱和ICP光谱

原子吸收光谱法和原子发射光谱法都属于原子光谱分析技术。不同之处在于原子发射光谱分析技术是通过测量被测元素的发射谱线的波长与强度进行定性与定量分析的一种原子光谱技术;而原子吸收光谱则是依据被测元素对锐线光源的吸收程度进行定量分析的一种原子光谱技术。下面对两种技术简单进行分别介绍。 第一部分  原子吸收

原子吸收光谱和ICP光谱比较

浅谈原子吸收光谱和ICP光谱   原子吸收光谱法和原子发射光谱法都属于原子光谱分析技术。不同之处在于原子发射光谱分析技术是通过测量被测元素的发射谱线的波长与强度进行定性与定量分析的一种原子光谱技术;而原子吸收光谱则是依据被测元素对锐线光源的吸收程度进行定量分析的一种原子光谱技术

原子吸收光谱和ICP光谱比较

原子吸收光谱法和原子发射光谱法都属于原子光谱分析技术。不同之处在于原子发射光谱分析技术是通过测量被测元素的发射谱线的波长与强度进行定性与定量分析的一种原子光谱技术;而原子吸收光谱则是依据被测元素对锐线光源的吸收程度进行定量分析的一种原子光谱技术。下面对两种技术简单进行分别介绍。 第一部分  原子吸收

浅谈原子吸收光谱和ICP光谱

原子吸收光谱法和原子发射光谱法都属于原子光谱分析技术。不同之处在于原子发射光谱分析技术是通过测量被测元素的发射谱线的波长与强度进行定性与定量分析的一种原子光谱技术;而原子吸收光谱则是依据被测元素对锐线光源的吸收程度进行定量分析的一种原子光谱技术。下面对两种技术简单进行分别介绍。 第一部分  原子吸收

原子吸收光谱和ICP光谱比较

  浅谈原子吸收光谱和ICP光谱  原子吸收光谱法和原子发射光谱法都属于原子光谱分析技术。不同之处在于原子发射光谱分析技术是通过测量被测元素的发射谱线的波长与强度进行定性与定量分析的一种原子光谱技术;而原子吸收光谱则是依据被测元素对锐线光源的吸收程度进行定量分析的一种原子光谱技术。下面对两种技术简单

原子吸收光谱的组成

物理干扰是指试样在转移、蒸发过程中任何物理因素变化而引起的干扰效应。属于这类干扰的因素有:试液的粘度、溶剂的蒸汽压、雾化气体的压力等。物理干扰是非选择性干扰,对试样各元素的影响基本是相似的。配制与被测试样相似的标准样品,是消除物理干扰的常用的方法。在不知道试样组成或无法匹配试样时,可采用标准加入法或

原子吸收光谱技术应用

  1、在金属材料中的分析应用  在对一些金属材料例如铝、铝合金、铜合金、钛合金等等,一些电源材料例如银锌电池、铬镍电池、热电池、太阳电池等,这些材料运用原子吸收光谱仪的技术方法所测的实验数据普遍具有较高的准确度,实现了实验条件的优化与完善。  2、在粉末材料中的分析应用  在分析与测试微量与常量的

原子吸收(发射)光谱法

方法提要试样经氢氟酸、硫酸分解,在!(H2SO4)=1%介质中,在原子吸收光谱仪上,使用空气-乙炔火焰,以硫酸钾作消电离剂,于波长670.8nm、780.0nm、852.1nm处,分别测定锂、铷、铯的吸光度或发射强度。一般常见元素均不干扰测定。测定范围0.001%~4.00%。仪器原子吸收光谱仪。试

原子吸收光谱的概念

原子吸收光谱(AAS):原子吸收光谱包括火焰原子化吸收光谱,石墨炉原子化吸收光谱,氢化物发生原子吸收光谱等。

原子吸收光谱的概念

原子吸收光谱(Atomic Absorption Spectroscopy,AAS),又称原子分光光度法,是基于待测元素的基态原子蒸汽对其特征谱线的吸收,由特征谱线的特征性和谱线被减弱的程度对待测元素进行定性定量分析的一种仪器分析的方法。

原子吸收光谱技术应用

  1、在金属材料中的分析应用  在对一些金属材料例如铝、铝合金、铜合金、钛合金等等,一些电源材料例如银锌电池、铬镍电池、热电池、太阳电池等,这些材料运用原子吸收光谱仪的技术方法所测的实验数据普遍具有较高的准确度,实现了实验条件的优化与完善。  2、在粉末材料中的分析应用  在分析与测试微量与常量的

原子吸收(发射)光谱法

方法提要试样经氢氟酸、硫酸分解,在!(H2SO4)=1%介质中,在原子吸收光谱仪上,使用空气-乙炔火焰,以硫酸钾作消电离剂,于波长670.8nm、780.0nm、852.1nm处,分别测定锂、铷、铯的吸光度或发射强度。一般常见元素均不干扰测定。测定范围0.001%~4.00%。仪器原子吸收光谱仪。试

原子吸收光谱法

用原子吸收光谱法测定铜,干扰少,方法灵敏、快速、简便,特别适用于低含量铜的测定。当试样中铜含量很低时,也可用APDC-MIBK、CHCl3或乙酸乙酯萃取,将铜富集于有机相中,直接在有机相中进行铜的测定。本法适用于0.001%~5%铜的测定,采用萃取有机相可测定0.1×10-6铜。方法提要试样经盐酸、

原子吸收光谱的测量

(1)积分吸收(Kν)在吸收线轮廓内,吸收系数的积分称为积分吸收系数,简称为积分吸收,它表示吸收的全部能量。从理论上可以得出,积分吸收与原子蒸气中吸收辐射的原子数成正比。数学表达式为现代岩矿分析实验教程式中:e为电子电荷;m为电子质量;c为光速;N0为单位体积内基态原子数;f为振子强度,即能被入射辐

原子吸收光谱的原理

光电管原理是光电效应,光电管接受到光照时,PN结两侧的P区和N区因本征激发产生的少数载流子浓度增多,若光电管接在闭合回路中,就会产生电流。也就是说,光电管无需外部提供电源(施加电压),即可在闭合回路中产生电流,但是,只要产生了电流,光电管两端的电压必然不为零。被光束照射到的电子会吸收光子的能量,但是