美国PHOTOMETRICS活体化学发光和荧光成像系统
美国 PHOTOMETRICS 活体化学发光和荧光成像系统 随着分子生物学、分子诊断学、基因治疗等学科的发展,“综合形态分析”的概念和应用被逐渐突显出来。研究人员迫切希望,能有一种研究方法和工具,使得他们能够直接捕捉整体动物、植物或微生物的形态变化:对动物、植物或微生物的目的细胞、目的组织等进行追踪分析,同时,不能对观测的标本造成损伤……;因此,活体化学发光和荧光成像系统应运而生。 美国 Photometrics 公司研制的 活体化学发光和荧光成像系统, 用于观察经化学发光或荧光标记后的动物、植物和微生物整体标本,并成像;结合专业的应用分析软件,可以被用于植物的突变体检测和筛选,基因表达在植物和动物体内的原位跟踪,以及单细胞内的基因表达等研究领域。 具体来说,有以下应用领域: -组织切片和单细胞 -EX VIVO全组织 -体内全动物 -体内基因表达 -传染性疾病 -肿瘤研究 ......阅读全文
血管微循环活体成像系统原理
基于OCT信号强度的血管成像 原理:血流为流体,与周围相对静态的组织相比,其反射的光线产生的随机干涉光谱会随时间发生更明显的变化。通过多次扫描以获得同一点多次OCT信号强度,对其进行处理后得到的结果若随时间变化明显则认为该处有血流。分频幅去相干血流成像(split-spectrum ampli
凝胶/化学发光成像系统凝胶成像种类
(1)普通凝胶成像分析系统:可以对蛋白电泳凝胶,DNA凝胶样品进行图象采集并进行定性和定量分析,样品包括:EB、SYBR Green、SYBR Gold、Texas Red、GelStar、Fluoroscecin、 Radiant Red等染色的核酸监测;以及Coomassie Blue、SYPR
活体多光谱荧光成像应用实例(三)
总结活体多光谱荧光成像可以扣除组织自体荧光和进行多种荧光团成像。这可以增强信噪比并进行先进的多重荧光成像,实现更强大的研究设计。参考文献[1] Levenson RM, Lynch DT, Kobayashi H, Backer JM, Backer MV (2008). Multiplexing
肿瘤细胞的标记及活体荧光成像
摘要 以绿色荧光蛋白( GFP) 作为标记基因转入人类肺癌细胞系(ASTC2a21) , 经800 mg/ L G418 筛选, 获得5 株高表达细胞系. 利用流式细胞仪对GFP 表达的稳定性进行了初步研究, 结果表明本实验中有些细胞株间GFP 表达稳定性有显著差异( P < 0101) . 将稳定
活体多光谱荧光成像应用实例(一)
前言传统的活体光学荧光成像(FLI)采用一个激发滤光片和一个发射滤光片。这对于区分靶向信号、可能存在的报告基因信号以及自体荧光组织信号而言有着诸多局限。多光谱(MS)FLI 采用多个激发滤光片和单个发射滤光片,或单个激发滤光片搭配多个发射滤光片,可以产生独特的荧光区域或材料的光谱曲线。(1)因此,图
活体多光谱荧光成像应用实例(二)
优化和多光谱建模启始成像和研究设置包括用于优化设置和建模的初始步骤:1- 荧光团成像(体外)2- 生成光谱模型3- 体内模型评估首先,我们建议您使用上文确定的滤光片对稀释后的荧光团进行成像。一旦采集到图像,通过将高斯曲线拟合到荧光团的实验曲线来创建光谱曲线(图7)。应用光谱模型 一旦光谱曲线实现了优
荧光化学发光凝胶成像系统的技术参数
1、CCD检测器:分辨率达1600 x 1200,200万像素科研级CCD,数据输出为16Bit,半导体制冷.绝对-28°C.不受环境温度影响。量子效率(峰值&425m处):56% & 50%,像素合成1x1至8x8。 2、F1.2高透光度全自动变焦镜头12.5-75mm,加配F0.95化学发
荧光化学发光凝胶成像系统可做什么实验
荧光,又作“萤光”,是指一种光致发光的冷发光现象。当某种常温物质经某种波长的入射光(通常是紫外线或X射线)照射,吸收光能后进入激发态,并且立即退激发并发出比入射光的的波长长的出射光(通常波长在可见光波段);而且一旦停止入射光,发光现象也随之立即消失。具有这种性质的出射光就被称之为荧光。在日常生活中,
化学发光成像系统的特点
与传统胶片法的比较,化学发光法具有:1、灵敏度高,数据结果可用于定量分析;2、不需要暗房、压片;3、自动完成曝光,关键条带不会因为曝光不足或者曝光过度而丢失;4、无需耗材;5、图片结果为电子文档,方便数据分析、存档和长期保存;
化学发光成像系统应用举例
化学发光成像系统可用于ECL、ECL PLUS、Southern、CDP Star、CSPD、Northern和Western杂交的化学发光等各种化学发光曝光后的样品检测。也可用于用荧光素酶(luciferase)基因标记细胞或DNA的生物发光检测。如果配备紫外、红、绿、蓝等激发光源,还可以进行多色
我国学者在活体化学发光成像方面取得进展
图 基于Schaap's dioxetane的长波长化学发光分子探针的设计及用于活体分子的高分辨化学发光成像 在国家自然科学基金项目(批准号:21874024、U21A20377)资助下,北京化工大学宋继彬教授团队利用分子内化学发光共振能量转移的方法,发展了长波长(>950 nm)化学发光
Kodak多模式活体成像系统连续中标
Kodak多模式活体成像系统,集多种成像模式于一身,性能卓越,受到了国内越来越多活体研究用户的青睐,近日又连续中标两台。 1)吉林大学生科院:设有分子生物学系、生物药学系、生物大分子研究室、考古DNA实验室、Edmond H.Fischer细胞信号传导实验室等单位及校直属科研单位分子酶学教
动物活体成像系统的技术指标
动物活体成像系统是一种用于化学、生物学领域的医学科研仪器,于2016年01月25日启用。 技术指标 采用背照射、背部薄化科学一级CCD;CCD采用电制冷方式,工作温度达到绝对-90℃,温度可视化;CCD尺寸不小于1.3 x 1.3 cm;CCD有效像素数量不少于1024 x 1024;CCD
活体生物发光成像系统CCD选择指南
近年来兴起的活体生物发光成像技术随着背部薄化、背照射冷CCD技术的产生而产生,并随着该CCD技术的发展而发展。由于具有更高量子效率CCD的问世,使活体生物发光技术具有更高的灵敏度,可以方便的应用到肿瘤学、基因表达和药物开发等各方面。从市场分析的角度,xenogen公司首先利用了先进的CCD技术来检测
小动物活体成像系统怎么选择
小动物活体成像技术有很多,大概分为两大类:一类是用来获取解剖学结构信息的技术,可以获得物理结构,骨胳、器官位置大小等,比如说CT,核磁MRI,或者是超声;另一类是功能学成像技术,是用来获取功能学信息的,比如说细胞功能,bio-marker功能,器官功能等等,目前最常用的功能学技术包括光学成像,使用放
多模式活体成像系统技术指标
生物发光和荧光三维成像;CCD检测器像素:≥1024X1024;分辨率:50微米;激发滤光片:10张及以上,包括20nm窄带宽或35nm宽带宽;内置X光模块,X光成像与荧光或发光成像能够叠加,并形成三维成像或深度信息;放置动物的托盘尺寸≥20cmX20cm,保证该范围均可检测到发光。
小动物活体成像系统怎么选择
小动物活体成像技术有很多,大概分为两大类:一类是用来获取解剖学结构信息的技术,可以获得物理结构,骨胳、器官位置大小等,比如说CT,核磁MRI,或者是超声;另一类是功能学成像技术,是用来获取功能学信息的,比如说细胞功能,bio-marker功能,器官功能等等,目前最常用的功能学技术包括光学成像,使用放
活体生物发光成像系统CCD选择指南
近年来兴起的活体生物发光成像技术随着背部薄化、背照射冷CCD技术的产生而产生,并随着该CCD技术的发展而发展。由于具有更高量子效率CCD的问世,使活体生物发光技术具有更高的灵敏度,可以方便的应用到肿瘤学、基因表达和药物开发等各方面。从市场分析的角度,xenogen公司首先利用了先进的CCD技术来检测
活体成像自发光荧光太强了,怎么屏蔽
不一定,看你的实验目的是什么。如果研究肿瘤模型,那肯定需要裸鼠或者SCID等免疫缺陷型的小鼠了。还有你所用的荧光物质也有关系,Cy5以上应该可以活体成像。只看药物器官分布的话LZ可以用普通的小白鼠然后剖腹观察,染料用Cy3或者其他普遍的FITC都行。
活体成像自发光荧光太强了,怎么屏蔽
不一定,看你的实验目的是什么。如果研究肿瘤模型,那肯定需要裸鼠或者SCID等免疫缺陷型的小鼠了。还有你所用的荧光物质也有关系,Cy5以上应该可以活体成像。只看药物器官分布的话LZ可以用普通的小白鼠然后剖腹观察,染料用Cy3或者其他普遍的FITC都行。
活体成像自发光荧光太强了,怎么屏蔽
不一定,看你的实验目的是什么。如果研究肿瘤模型,那肯定需要裸鼠或者SCID等免疫缺陷型的小鼠了。还有你所用的荧光物质也有关系,Cy5以上应该可以活体成像。只看药物器官分布的话LZ可以用普通的小白鼠然后剖腹观察,染料用Cy3或者其他普遍的FITC都行。
光纤式在体荧光显微成像系统在动态观测活体动物脑内...
光纤式在体荧光显微成像系统在动态观测活体动物脑内神经元中的应用中国上海复旦大学脑科学研究院、医学神经生物学国家重点实验室的石 莹,陈露岚,姜 民等人在生理学报 Acta Physiologica Sinica, December 25, 2012, 64(6): 695–699 发表文章对建立大鼠脑
凝胶/化学发光成像系统应用范围
总体上来说凝胶成像可应用于:凝胶成像系统可以用于:蛋白质、核酸、多肽、氨基酸、多聚氨基酸等其他生物分子的分离纯化结果作定性分析(1)分子量定量对于一般常用的DNA胶片,利用分子量定量功能,通过对胶上DNA Marker条带的已知分子量注释,自动生成拟合曲线,并以它衡量得到未知条带的分子量。通过这种方
电脑化学发光凝胶成像系统
全自动凝胶成像分析系统应用范围:本系统集知识产权国家一体的全自动凝胶成像分析系统。采用进口专业CCD和分析软件.进口电动变焦镜头.具有图像清晰.操作简便等优点.产品经华东理工大学.武汉大学.中国科学院武汉病毒所.华中师范大学.华中科技大学.第四军医大学.西北农林大学.兰州大学.华南农业大学、温州医学
活体成像概述
一、引子 自从Roentgen发现了X光的用途,动物活体成像就走进了科学家的视野。活体成像有很多种模式,除了X光的离子辐射成像,还有声音、磁铁甚至光光成像。每种都有缺点和优点,举例来说,要确定解剖结构的位置和形状,CT扫描、MRI、超声波可能是较好的选择,但涉及到肿瘤细胞的注射位置、表达层面,他们
凝胶成像系统,化学发光系统和紫外交联仪Biometra,UVI
英国UVItec公司位于英国剑桥,专门提供高质量的紫外线设备,凝胶成像和分析系统。该公司将自身经验、技术专家意见和客户反馈信息相融合,进而使紫外分析设备和凝胶数据分析系统处于世界领先地位。 UVI化学发光成像系统 UVIchemi 特性 ·带有Peltier冷却元件
血管微循环活体成像系统的优势简介
◆高分辨率:达微米级,具有1-3mm穿透深度,可进行活体的三维组织成像; ◆无标记:无需造影剂的三维高分辨率微血管成像,可监测多种血管相关疾病模型的病理改变; ◆速度快:可实现达350fps的快速断层扫描; ◆应用广泛:可对多种组织及器官进行微血管成像如脑组织,皮肤,骨(颅骨,股骨髁,周围
活体成像技术在血液系统中的应用
光学活体成像技术主要采用生物发光(bioluminescence)与荧光(fluorescence)两种技术。生物发光是用荧光素酶(Luciferase)基因标记细胞或DNA,而荧光技术则采用荧光报告基团(GFP、RFP, Cyt及dyes等)进行标记。可见光体内成像通过对同一组实验对象在不
多模式活体成像系统主要功能
用于标记生物分子或病原体后、成像观察标记物在活体实验小动物体内的分布与代谢等研究。
阿霉素的荧光能直接用于活体成像吗
阿霉素的荧光能直接用于活体成像活体荧光成像一般有三种标记方法:荧光蛋白标记、荧光染料标记以及量子点标记。荧光蛋白适用于标记肿瘤细胞、病毒、基因等。通常使用GFP/EGFP/RFP等。荧光染料常用Cy3,Cy5以及Cy7。可以标记抗体、多肽、小分子药物。量子点标记是一种新的标记方法,