《代谢工程》:脂肪酸链长精准可调的工业产油微藻
脂肪酸在细胞中以能量存储分子、膜脂、信号分子等形式普遍存在,并广泛应用于生物燃料、营养与健康、材料化工等产业。作为末端含有一个羧基的脂肪族碳氢链,碳链长度是决定脂肪酸功能、价值和用途的关键因素之一。近日,中国科学院青岛生物能源与过程研究所单细胞中心开发出脂肪酸“全链长范围”、“单元链长精度”精准可调的工业产油微藻,并提出工业微藻中脂肪酸链长调控的分子机制模型,相关研究成果发表在《代谢工程》上。 基于碳链长度,脂肪酸可分为短链、中链、长链和超长链四类。超长链脂肪酸如花生四烯酸(ARA)和二十碳五烯酸(EPA)等是人类和动物的营养补充剂,而长链和中链脂肪酸是动植物脂肪的主要成分,也是抗菌剂、润滑油、洗涤剂、表面活性剂和生物柴油等诸多工业产品的关键成分。每种链长的脂肪酸都有其特殊功能。因此,可持续和环境友好的脂肪酸生产,依赖于“全链长范围”、“单元链长精度”精准可调的脂肪酸细胞工厂。 作为一种“负碳”的细胞工厂,工业微藻能够在......阅读全文
《代谢工程》:脂肪酸链长精准可调的工业产油微藻
脂肪酸在细胞中以能量存储分子、膜脂、信号分子等形式普遍存在,并广泛应用于生物燃料、营养与健康、材料化工等产业。作为末端含有一个羧基的脂肪族碳氢链,碳链长度是决定脂肪酸功能、价值和用途的关键因素之一。近日,中国科学院青岛生物能源与过程研究所单细胞中心开发出脂肪酸“全链长范围”、“单元链长精度”精准
工业微藻细胞工厂进入“藻油品质定制化”时代
工业产油微藻可通过光合作用,将二氧化碳和水规模化、直接地合成为高能量密度的油脂分子(甘油三酯;TAG)。甘油三酯上脂肪酸碳链的饱和度,则决定了藻油是适合用于生物柴油,还是适合作为营养品。因此,饱和度是决定藻油的品质、用途与经济价值的最关键因素之一。但是,能否基于工业微藻底盘细胞,实现藻油饱和度的
高产中链甘油三酯工业微藻
中链甘油三酯(Mid-chain Triacylglycerides,MCT)是特殊的功能油脂,临床上主要用于减肥、促进能量代谢以及促进脑退化人群的恢复。近日,中国科学院青岛生物能源与过程研究所单细胞研究中心与大连化学物理研究所所高分辨分离分析及代谢组学研究组合作,揭示了微藻细胞中调控MCT合成
根据碳链长度对脂肪酸进行分类
可分为:短链脂肪酸、中链脂肪酸和长链脂肪酸。脂肪酸根据碳链长度的不同又可将其分为 :短链脂肪酸(short chain fatty acids,SCFA),其碳链上的碳原子数小于6,也称作挥发性脂肪酸(volatile fatty acids,VFA);中链脂肪酸(Midchain fatty ac
中科院青岛能源所开发出“油脂结构定制化”微藻细胞工厂
日前,中科院青岛能源所单细胞中心研究证明,自然界中存在对于二十碳五烯酸(EPA)、亚油酸(LA)等多不饱和脂肪酸分子(PUFAs)具有选择性的II型二酰甘油酰基转移酶(DGAT2),并基于此示范了甘油三酯(TAG)之PUFA组成“定制化”的工业微藻细胞工厂。相关研究成果在线发表于《分子植物》。
脂肪酸根据碳链长度的不同分类
可分为:短链脂肪酸、中链脂肪酸和长链脂肪酸。 脂肪酸根据碳链长度的不同又可将其分为: 短链脂肪酸(short chain fatty acids,SCFA),其碳链上的碳原子数小于6,也称作挥发性脂肪酸(volatile fatty acids,VFA); 中链脂肪酸(Midchain
脂肪酸根据碳链长度的不同分类
可分为:短链脂肪酸、中链脂肪酸和长链脂肪酸。 脂肪酸根据碳链长度的不同又可将其分为: 短链脂肪酸(short chain fatty acids,SCFA),其碳链上的碳原子数小于6,也称作挥发性脂肪酸(volatile fatty acids,VFA); 中链脂肪酸(Midchain f
青岛能源所开发出“油脂结构定制化”的微藻细胞工厂
甘油三酯(TAG)是地球上能量载荷最高、结构最多元的生物大分子之一,因此它们是地球上动物、植物和人体中能量与碳源的存储载体与通用货币,也是生物柴油的重要来源。每个TAG分子由一个甘油分子和其上搭载的三个脂肪酸(FA)分子构成,后者的饱和度与碳链长度等特征,决定了TAG分子的营养功效、燃油特性与经
蓝光特异性诱导的工业微藻高产油技术
微藻是地球上主要的初级生产者之一,在全球碳循环中扮演重要角色。通过光合作用,微藻将光能和CO2转化为油脂(甘油三酯,TAG)等高能储碳物质,可在“碳固定”的同时助力“碳减排”。然而,微藻切实服务“双碳”行动的潜力,受限于其油脂生产率、规模培养工艺等影响能源微藻经济性的关键因素。近日,中国科学院青
科学家建立工业产油微藻基因敲低技术
微藻通过光合作用将二氧化碳、光和水转化为油脂,因此,作为一种潜在的清洁能源生产和二氧化碳高值化方案,工业产油微藻受到了广泛关注。然而,藻类高效遗传工具的匮乏,一直是工业产油微藻分子育种和光驱固碳合成生物技术的重要瓶颈之一。近日,中国科学院青岛生物能源与过程研究所与中国科学院水生生物研究所合作,以
微囊藻计数
摘要:微囊藻计数是藻类监测实验工作中一件困难的工作。本文使用迅数Algacount藻类计数仪进行微囊藻细胞计数,大大缩短了计数所需的时间和人力,提高了计数效率。关键词: 有囊藻类 藻细胞 微囊藻计数 藻类计数仪藻类监测是一项长期而重要的工作。实验人员需要对江河湖海等各种水体系统是否发生水华或赤潮做出
脂肪粉里的脂肪酸链长短和含量怎么检测
只要具有气相色谱仪的单位都可以测,但需要标准品,而标准品是比较贵的,从4个碳原子到22个碳原子的脂肪酸标准品一套需要将近2万元,所以一般的单位如果不具有现成的标准品都不是很愿意收一两个样来测。
青岛能源所建立工业产油微藻基因组编辑技术
自然界的一些真核微藻能够通过光合作用固定二氧化碳,并将其转化和存储为油脂。因此,作为一种潜在可规模化的清洁能源生产和固碳减排方案,微藻能源近年来受到了广泛关注。然而,高效遗传工具的匮乏,极大限制了工业产油微藻的机制研究和分子育种。近日,中国科学院青岛生物能源与过程研究所单细胞研究中心以微拟球藻为
能源微藻用于工业烟气生物脱硝研究获系列进展
氮氧化物(NOx)是化石燃料燃烧烟气中所含的重要环境污染物,主要以NO形式存在。传统的烟气脱硝方法能耗大,存在安全性问题并造成二次污染。微藻生物量中氮元素含量高达细胞干重的7-12%,其规模化培养可利用工业烟道气中高浓度的氮氧化物(NOx)。通过能源微藻的培养,不仅可以脱去工业烟气中的NOx,降
微囊藻毒素分类
水体产毒藻种主要为蓝藻,如微囊藻、鱼腥藻和束丝藻等。微囊藻可产生肝毒素,导致腹泻、呕吐、肝肾等器官的损坏,并有促瘤致癌作用。鱼腥藻和束丝藻可产生神经毒素,损害神经系统,引起惊厥、口舌麻木、呼吸困难甚至呼吸衰竭。目前,淡水藻类产生的毒素可分为多肽毒素、生物碱毒素和其他毒素三类。微囊藻毒素是环状的七氨酸
中科院青岛能源所发明工业微藻高产油新技术
BLIO技术助力微藻服务碳达峰与碳中和 单细胞中心供图微藻是地球上最主要的初级生产者之一,在全球碳循环中扮演重要角色。通过光合作用,微藻把光能和CO2转化为油脂(甘油三酯;TAG)等高能储碳物质,因此可在“碳固定”的同时助力“碳减排”。但是微藻切实服务双碳行动的潜力,一直受限于其油脂生产率、
中科院青岛能源所发明工业微藻高产油新技术
BLIO技术助力微藻服务碳达峰与碳中和 单细胞中心供图微藻是地球上最主要的初级生产者之一,在全球碳循环中扮演重要角色。通过光合作用,微藻把光能和CO2转化为油脂(甘油三酯;TAG)等高能储碳物质,因此可在“碳固定”的同时助力“碳减排”。但是微藻切实服务双碳行动的潜力,一直受限于其油脂生产率、
青岛能源所等开发出高CO2耐受工业产油微藻
工业微藻能够将阳光和烟道气直接转化为生物柴油,因此是应对全球气候变暖的重要举措之一。然而烟道气中高浓度的CO2及其导致的酸性培养条件,往往抑制了微藻的生长,因此提高CO2耐受性是设计与构建超级光合固碳细胞工厂的关键瓶颈之一。近期,中国科学院青岛生物能源与过程研究所单细胞中心通过逆转进化时针的研究
6mA甲基化修饰调控工业微藻油脂合成过程揭示
微藻在全球光合作用、二氧化碳固定及初级生产力中贡献卓著,是颇有前景的合成生物学底盘细胞。为了探索工业固碳产油微藻的表观遗传机制和生理作用,中国科学院青岛生物能源与过程研究所单细胞研究中心以海洋微拟球藻为模式,解析了野生型和6mA扰动突变株中N6-甲基腺苷(N6-methyladenosine,6
廖强:培育微藻-变废为宝
廖强(左)指导学生做实验 受访者供图 工业废气、工厂废水、秸秆等污染物,通过微藻就可实现变废为宝,不仅能再次回收利用,还能产生燃料。近日,重庆大学廖强团队凭借这一研究入选“全国高校黄大年式教师团队”。该团队成员都说,这份荣誉的取得离不开团队负责人廖强教授20年的创新与坚持。 巧用太阳能 让
微藻筛选技术研究
2.1 优良藻种的保存生产生物质燃料,优良藻种的获取至关重要。筛选出可用于规模化生产的高产、高品质的藻种,重点在于从自然界中直接分离筛选到新的原始藻株。世界上多个实验室已经筛选到大量藻种,并建立了藻种库,如UTEX 保藏有约3000 种藻种,CCMP 保藏藻种大于2500 种。但由于这些藻种已经培养
水生藻类特征可用来判断湖泊沉积物古水文特征
氢同位素组成被认为是湖泊水文环境变化的可靠指标,然而叶蜡氢同位素受多种输入来源影响,目前尚没有发现真实反映湖水氢同位素的生物标志物,这限制了叶蜡氢同位素应用于湖泊水文环境重建。中国科学院地球环境研究所 “极端气候事件及影响”团队刘卫国课题组,系统调查了青藏高原东北部8个湖泊不同来源(包含内源:水生沉
微藻能源“973”项目全面启动
我国微藻能源方向的首个国家重点基础研究发展计划(“973”计划)项目“微藻能源规模化制备的科学基础”,2月19日在浙江嘉兴科技城正式启动。该项目由华东理工大学、中国海洋大学、南京工业大学、北京化工大学、中国科学院海洋研究所、中国石油大学(北京)、中国科学院天津工业生物技术研究所、中国科
微囊藻毒素的毒效应
动物模型实验表明,MC具有明显的嗜肝性,其污染与肝癌的发生、肝坏死以及肝内出血有密切关系,严重时甚至能引起受试生物死亡。MC跨膜转运需要ATP 依赖性的转运蛋白(ATP-dependent transporter)。对大鼠毒理学研究表明,胆汁酸转运蛋白(bileacid transporter)很可
微藻生物学研究分析
微藻是光合自养微生物,可以把CO2 和水转化为脂肪、碳水化合物等大分子有机物。在恶劣生长环境中(如氮饥饿),微藻体内能量主要以三酰甘油(TAGs)的形式贮藏。某些种类的微藻具有高效的光合作用和TAGs 积累能力(三酰甘油含量可占到干重的30-60%),油脂生产潜力巨大远远超过了传统的陆生植物。藻类的
微藻氨氮含量检测方法
微藻氨氮含量检测方法步骤如下:1、通过聚乙烯瓶或玻璃瓶进行污水采样。2、取100毫升杯子中的水样于具塞量筒或比色管中,加入硫酸锌溶液和零点一毫升氢氧化钠溶液,混匀,放置使沉淀,用经无氨水充分洗涤过的中速滤纸过滤,弃去初滤液。3、测量吸光度,然后记录下来。4、绘制标准曲线:由测的的吸光度,减去零浓度空
微囊藻毒素的分析步骤
①标准曲线的绘制。配制成0.30μg/L、0.50μg/L、1.00μg/L、2.00μg/L、5.00μgMC-RR和MC-LR标准使用液。分别取20μL注入高压液相色谱仪,测得各浓度的峰面以峰面积为纵坐标,浓度为横坐标,绘制标准曲线。②标准色谱图。分别注入样品20μL,以标样核对,记录色谱峰的保
NEPA21电转在工业微藻中高效无转基因靶向诱变的应用
Highly efficient transgene-free targeted mutagenesis and single-stranded oligodeoxynucleotide-mediated precise knock-in in the industrial microalg
微藻:单细胞植物的大学问
微藻是一类古老的低等植物,在陆地、淡水湖泊、海洋分布广泛。微藻种类繁多,截至21世纪初已发现的藻类有三万余种,其中微小类群就占了70%,即两万余种。 中科院水生生物研究所(以下简称水生所)研究员、国家开发投资公司微藻生物科技中心主任、“千人计划”专家胡强主要从事藻类生物学、生物技术与生物能源
微藻生物的光合作用
目前估计的微藻理论最高产量大致为100-200g-1m-2day-1,但微藻的确切理论最大产量是多少却没有一致的看法,造成伪造理论产量估算结果差距较大的部分原因是由于微藻培养物的透光、反射和吸收等参数的影响;另一个问题是在计算光合反应器产率时,通常只考虑反应器本身,而不考虑反应器所处的地理位置。理论