植物荧光成像仪——荧光成像简介
荧光是自然界常见的一种发光现象。荧光是光子与分子的相互作用产生的,这种相互过程可以通过雅布隆斯基(Jablonslc)分子能级图描述:大多数分子在常态下,是处于基态的最低振动能级So,当受到能量(光能、电能、化学能等等)激发后,原子核周围的电子从基态能级So跃迁到能量较高的激发态(第一或第二激发态),激发态的电子处于高能量状态,不稳定,会通过两种途径释放能量回到基态,一种是以光子形式释放能量的辐射跃迁(包括荧光和磷光过程),一种是以热能等形式释放能量的非辐射跃迁。通常原子核外电子受到激发从基态So跃迁到激发态Si后,会通过非辐射跃迁的方式快速降落在最低振动能级,随后由最低振动能级回到基态,以光子辐射的形式释放出能量,具有这种性质的出射光称为荧光。......阅读全文
植物荧光成像仪——荧光成像简介
荧光是自然界常见的一种发光现象。荧光是光子与分子的相互作用产生的,这种相互过程可以通过雅布隆斯基(Jablonslc)分子能级图描述:大多数分子在常态下,是处于基态的最低振动能级So,当受到能量(光能、电能、化学能等等)激发后,原子核周围的电子从基态能级So跃迁到能量较高的激发态(第一或第二激发
植物荧光成像仪——荧光成像原理
荧光是自然界常见的一种发光现象。荧光是光子与分子的相互作用产生的,这种相互过程可以通过雅布隆斯基(Jablonslc)分子能级图描述:大多数分子在常态下,是处于基态的最低振动能级So,当受到能量(光能、电能、化学能等等)激发后,原子核周围的电子从基态能级So跃迁到能量较高的激发态(第一或第二激发
植物荧光成像仪——选型
光源 可选激光光源和发光二极管光源;激光光源为单波长非连续光,分辨率和灵敏度高;二极管光源相对激光光源结构更紧凑简洁,激发光带宽较宽,能量输出相对较低,可以直接整合到图像扫描设备内,也比较经济,轻便; 荧光信号收集系统 主要包括振镜式的扫描系统和摆头式扫描系统。振镜式的扫描系统通过快速摆动
植物荧光成像仪概述
移动式植物荧光成像系统是一种用于农学、水利工程领域的分析仪器,于2015年3月24日启用。 单幅成像面积最大的叶绿素荧光成像系统不小于35×35cm,可对整株植物甚至多株植物进行实验成像分析; (2)可在野外自由移动,非损伤原位对植物进行叶绿素荧光成像研究; (3)高灵敏度CCD镜头,时间分辨
植物多光谱荧光成像系统多激发光、多光谱荧光成像技术
多激发光、多光谱荧光成像技术:通过光学滤波器技术,仅使特定波长的光(激发光)到达样品以激发荧光,同时仅使特定波长的激发荧光到达检测器。不同的荧光发色团(如叶绿素或GFP绿色荧光蛋白等)对不同波长的激发光“敏感”并吸收后激发出不同波长的荧光,根据此原理可以选配2个或2个以上的激发光源、滤波轮及相应
紫外成像仪简介
紫外成像仪是指,电晕放电是一种局部化的放电现象, 当带电体的局部电压应力超过临界值时,会使空气游离而产生电晕放电现象。特别是高压电力设备,其常因设计、制造、安装及维护工作不良产生电晕、闪络或电弧。在放电过程中,空气中的电子不断获得和释放能量,而当电子释放能量(即放电),便会放出紫外线。
植物叶绿素荧光成像系统的功能特性
叶绿素荧光成像和表型分析同步测量 同时具备调制和非调制叶绿素荧光测量功能 出色的高清相机(1.6 M pixel)、高信噪比成像 16位图像格式,无与伦比的成像质量 光源、相机、滤光片、电脑一体化设计 无可见镜头畸变,无需图像校正 成像范围18 x 18cm 多种测量protoco
植物叶绿素荧光成像系统的测量参数
调制叶绿素荧光参数:Fo、Fm、Fv/Fm、dFq/Fm=DF/Fm、Fs’、Fm’、Fo’、Fq’/Fm’=Fv’/Fm’、rETR、NPQ、Y(NO)、Y(NPQ)、qN、qP、qL、1-qP和1-qL等; 非调制叶绿素荧光参数:Fo、Fi、Fm、1-Fi/Fm、IC-Area、IC-Ar
红外热成像仪简介
红外热像仪是利用红外探测器和光学成像物镜接收被测目标的红外辐射能量分布图形反映到红外探测器的光敏元件上,从而获得红外热像图,这种热像图与物体表面的热分布场相对应。通俗地讲红外热像仪就是将物体发出的不可见红外能量转变为可见的热图像。热图像的上面的不同颜色代表被测物体的不同温度。
紫外成像仪的简介
随着电力系统的电网规模的不断扩大、电力负荷要求的不断提高,电力系统中使用的各种类型的高压设备的损坏、故障也不断增加,相应对预防性维护的要求也不断提高。输供电线路和变电站配电等设备在大气环境下工作,在某些情况下随着绝缘性能的降低、出现结构缺陷,或表面局部放电现象,电晕和表面局部放电过程中,电晕和放电部
OFIL紫外成像仪简介
PSIL-70 是一款紧凑型手持式电晕成像仪,对电晕信号具有高灵敏度,适用于室内/室外日间操作,符合人体工程学设计和易操作性,并且运行可靠。PSIL- 70相机属于远程无损测试成像仪,可以实时查明现有的 电晕及其来源,并记录存档,方便实用。适用场景 适用于电力设施,金属加工厂(FAB),
荧光成像系统
对完全校准好的荧光成像系统,当用不同的滤色镜组时,样品上一个点在检测器上精确成像为一个点,也就是像素对像素。然而,不同颜色的通道 merge 时,物镜的色差校正不够、滤镜光路没有完全对准都会使得荧光信号之间的记录有差错。对具有复杂图案的图像或明暗信号相混的图像,这个可能就检测不到。会得出这样的结论:
荧光成像系统
用荧光显微镜进行3D球状体荧光成像时,需要进行仪器设置优化和使用高级功能才能得到更好的成像结果。对球状体进行Z轴层扫时,需要选择合适的物镜并进行合适地聚焦才能拍出更清晰的图片。EVOS细胞成像系统和配套的CellesteTM成像分析软件可以完美地对球状体的大小、结构和蛋白表达水平进行定性和定量分析。
平面式叶绿素荧光成像简介和特点
平面式叶绿素荧光成像系统是一款定制型的荧光成像系统,用于大型生长盘中样品的通量成像和多谱段分析。机体采用金属柜体设计,可以轻松移动、安全存储和运输,样品可以轻松的放入测量区域,柜子内部是自动控制高度和位置的光源是相机。 平面式叶绿素荧光成像系统特点: ·测量面积80cm x 40cm; ·
植物多光谱荧光成像系统配置规格
1) 一体式:可进行叶绿素荧光成像分析及UV紫外光源激发4个波段的荧光成像分析,成像面积13 x 13cm,系统高度集成(整体配置于一个一体式暗适用操作箱内)、方便使用,具备7位滤波轮及多光谱荧光成像滤波器组、高分辨率CCD镜头、UV紫外光激发多光谱荧光成像功能模块及程序软件等;具体又有如下几种
植物多光谱荧光成像系统的广泛应用
植物多光谱荧光成像系统可用于叶绿素荧光动态成像分析、多激发光光合效率成像分析、紫外光激发多光谱荧光成像分析、PAR吸收与NDVI(植物光谱反射指数)成像分析、GFP/YFP稳态荧光成像等,全面、非接触、高灵敏度反映植物生理生态、胁迫生理与抗性、光合效率等。Fluorcam植物多光谱荧光成像系统广
植物叶绿素荧光成像系统的主要技术参数
调制测量光:蓝色LED, 450nm,半峰全宽20nm,最大光强4000 umol m-2 s-1 ,独立触发 Kautsky测量光:蓝色LED, 450nm,半峰全宽20nm,最大光强8000 umol m-2 s-1 饱和脉冲:蓝色LED, 450nm,半峰全宽20nm,最大光强4000
树木断层成像仪相关简介
树木断层成像仪,可利用应力波,模拟图形显示测量树木或伐木的内部腐烂、空洞和破裂等内部状态,评估树木的有效情况,确定树木或伐木的质量。通过Arboradix模块,也可以探测受损的树根。通过制图模块可以估算出树木的较弱点以做防风措施。 [脉冲式]树木断层成像仪ABTOM原理: 利用应力波在健康树
凝胶成像仪成像仪特点
自动对焦(Auto Focus)凝胶成像分析系统,解决了新手在拍摄凝胶照片过成中,经常发生的被拍摄照片的亮度和对比度,焦距不准使照片不清晰的问题。 简介 自动对焦(Auto Focus)是利用物体光反射的原理,将反射的光被相机上的传感器CCD接受,通过计算机处理,带动电动对焦装置进行对焦的方式叫
FluorCam多光谱荧光成像技术应用案例—多光谱荧光成像...
FluorCam多光谱荧光成像技术应用案例—多光谱荧光成像是什么1. 多光谱荧光的发现及特性二十世纪八九十年代,植物生理学家对植物活体荧光——主要是叶绿素荧光研究不断深入。激发叶绿素荧光主要是使用红光、蓝光或绿光等可见光。当科学家使用UV紫外光对植物叶片进行激发,发现植物产生了具备4个特征性波峰的荧
荧光成像与高光成像区别
荧光成像与高光成像区别如下:1、原理:荧光成像是利用荧光标记的分子在激发后发出特定波长的光来成像,而高光成像是基于样本的反射或透射光强度的差异来成像。2、样本处理:荧光成像需要在样本中引入荧光标记物,通常是通过染色或基因工程技术来实现,而高光成像则不需要对样本进行特殊处理,直接观察样本的自然反射或透
植物表型分析技术快讯—多光谱荧光成像系统研究植物...2
案例2: 由真菌Rosellinia necatrix引起的白根腐病,是影响鳄梨作物的最主要的土壤传播疾病之一。白根腐病会引起植物根系腐烂、叶片发黄枯萎,甚至导致植株在出现第一个叶面症状几周后死亡。病害的早期检测与防治至关重要。本案例中,对感染Rosellinia necatrix后的植
植物表型分析技术快讯—多光谱荧光成像系统研究植物...1
植物表型分析技术快讯—多光谱荧光成像系统研究植物胁迫响应FluorCam多光谱荧光成像系统是国际知名FluorCam叶绿素荧光成像技术的高级扩展产品,其高度集成,功能强大,应用广泛,利用系统中的叶绿素荧光成像、多光谱荧光成像、红外热成像技术及RGB成像,可对植物进行全面、非接触的监测,高灵敏度反映光
FluorCam便携式叶绿素荧光成像—植物表型分析、光合生理...
FluorCam便携式叶绿素荧光成像—植物表型分析、光合生理生态研究FluorCam便携式叶绿素荧光成像可以与LCi/LCpro等便携式光合仪及FluorPen手持式叶绿素荧光测量仪组合使用,应用于实验室和大田植物光合生理生态快速全面测量研究、植物表型分析、生物(病虫害)与非生物胁迫/抗性检测,具备
FluorCam多光谱荧光成像技术应用案例——植物干旱响应表...
FluorCam多光谱荧光成像技术应用案例——植物干旱响应表型研究植物对干旱的响应过程非常复杂,同时植物也有多样的应答机制来回避和耐受干旱胁迫并维持生长。光合系统被认为是对干旱极为敏感的,因此FluorCam叶绿素荧光成像系统从问世起就被广泛应用于植物干旱胁迫的研究。美国怀俄明大学将芜菁Brassi
OFIL紫外成像仪的主要应用简介
1. 运行中绝缘子的劣化以及复合绝缘子及其护套电蚀检测; 2. 高压变电站及线路的整体维护; 3. 支柱式绝缘上的微观裂纹检测; 4. 悬挂式瓷绝缘中的零值绝缘子检测; 5. 评估绝缘设备表面的污秽程度 ; 6. 评估验收高压带电设备布局、结构、安装、设计是否合理; 7. 检测运行中
红外成像仪简介和使用方法
红外热成像仪,可以以“面”的形式对目标整体实时成像,使操作者通过屏幕显示的图像色彩和热点追踪显示功能就能初步判断发热情况和故障部位,然后加以后续分析,从而高效率、高准确率地确认问题所在。 使用方法 红外热像仪非常易于使用,热成像垂手可得,操作和直观的屏显指南,不需专业培训便可进行准确的测量,
植物多光谱荧光成像系统UV紫外光激发多光谱成像技术
UV紫外光激发多光谱荧光成像技术:长波段UV紫外光(320nm-400nm)对植物叶片激发,可以产生具有4个特征性波峰的荧光光谱,4个波峰的波长为蓝光440nm(F440)、绿光520nm(F520)、红光690nm(F690)和远红外740nm(F740),其中F440和F520统称为BGF,
动态荧光成像定量分析系统相关数据简介
动态荧光成像定量分析系统是一种用于药学领域的分析仪器,于2016年12月19日启用。 技术指标 Flexstation 3多功能酶标仪带有双光栅提供1nm步径全波长检测,可对6-384孔微孔板进行光吸收(紫外-可见)(200-1000nm)、荧光强度(250-850nm)、化学发光(250-
荧光偏振简介
Perrin于1926年首先描述了荧光偏振理论,他观察到溶液中的荧光分子在受到偏振光激发时,如果在激发时分子保持静止,该分子将发出固定偏振平面的发射光(发射光仍保持偏振性)。然而,如果分子旋转或翻转那么发射光的偏振平面将不同于初始激发光的偏振平面。分子的偏振性与分子旋转驰豫时间成比例,分子旋转驰豫时