常见发光免疫分析技术的比较(二)

1.4.3 美国贝克曼库尔特公司AccessOR全自动微粒子化学发光免疫分析系统。采用ALP-AMPPD发光系统,以微粒子作为载体,表面积大、结合快、达到最大发光信号时间短、反应及分离速度快,缩短了分析时间,有效提高了灵敏度和准确性。该系统可全自动控制整个测定和数据分析处理,具有批量和任选测定24个项目的能力和急诊插入功能,平均检测速度100/h。冷藏试剂盘可放24种试剂,探针直接插入试剂盒并自动封闭,直至试剂用完,不污染不浪费。超声波技术被用于搅拌使微粒悬液混均匀并加速反应,用于探针取样液面检查保证取样准确,用于洗涤时减少交叉污染。使用AccessOR的用户还可以申请Internet全球通讯网络,进行通讯查询。AccessOR独特的塑料智能化外形设计,使其从外观到内在品质,给人们留下深刻的印象。 &nbs......阅读全文

常见发光免疫分析技术的比较(二)

       1.4.3 美国贝克曼库尔特公司AccessOR全自动微粒子化学发光免疫分析系统。采用ALP-AMPPD发光系统,以微粒子作为载体,表面积大、结合快、达到最大发光信号时间短、反应及分离速度快,缩短了分析时间,有效提高了灵敏度和准确性。该系统可全自动控制整个测定和数据分析处理,具有批

常见发光免疫分析技术的比较

免疫学技术的迅速发展对精度的要求越来越高,一般的酶免检测技术已逐渐无法适应这种形势的需要。现今发展的主流已不再是用放射性同位素标记的测定方法(避免污染环境及对人体损害),而是转向于能在任何地方操作的快速均相和固相测定,最终趋向于能够检测到皮克或10负18摩尔级的、非同位素的、自动或半自动的实验室测定

常见发光免疫分析技术的比较

      免疫学技术的迅速发展对精度的要求越来越高,一般的酶免检测技术已逐渐无法适应这种形势的需要。现今发展的主流已不再是用放射性同位素标记的测定方法(避免污染环境及对人体损害),而是转向于能在任何地方操作的快速均相和固相测定,最终趋向于能够枪测到皮克或10负18摩尔级的、非同位素的、自动或半自动

常见发光免疫分析技术的比较

发光免疫分析是一种灵敏度高、特异性强、检测快速及无放射危害的分析技术。70年代末以来得到了迅速发展,目前在国际上已经实现商品化和产业化的发光免疫分析产品,基本上可以分为:化学发光、时间分辨荧光(也称时间延迟光致发光)、电化学发光(也称场致发光和电致发光)几种。       1、化学发光       

常见发光免疫分析技术的比较(三)

       2.3.3 其它物质的检测:还可对其他一些微量物质进行测定,如维生索、叶酸、免疫球蛋白及酶类,人免疫球蛋白、人血清清蛋白、人中性粒细胞溶菌酶、葡萄糖和除草荆等。       2.4 评价:电化学发光是一种电促发光技术,采用的是特殊的化学发光剂Ru(bpy)3+作为标记物并在发光

常见发光免疫分析技术的比较(四)

       3.4 评价时间分辨荧光技术的不足为测量方式复杂、仪器成本及维护费用高,环境及样品中同类元素可导致本底干扰等。       3.5 代表仪器法国CIS公司1996年在欧洲推出KRYPTOR全自动时间分辨荧光免疫分析系统,用三价镧系元素铕(Eu3+)与磷酸三丁酯剂量 校准曲线。近

常见发光免疫分析技术的比较(一)

      免疫学技术的迅速发展对精度的要求越来越高,一般的酶免检测技术已逐渐无法适应这种形势的需要。现今发展的主流已不再是用放射性同位素标记的测定方法(避免污染环境及对人体损害),而是转向于能在任何地方操作的快速均相和固相测定,最终趋向于能够枪测到皮克或10负18摩尔级的、非同位素的、自动或半

酶联免疫吸附测定技术和化学发光免疫分析的比较

酶联免疫吸附测定技术(ELISA)和化学发光免疫分析(CLIA)的比较如下:检测原理ELISA:基于酶催化底物产生显色反应,通过比色测定吸光度来定量。CLIA:利用化学发光物质在化学反应中产生的发光信号来定量。灵敏度CLIA 通常比 ELISA 更灵敏,能够检测更低浓度的物质。检测下限ELISA 的

常见免疫技术鉴析及化学发光纳米磁微粒(二)

4电化学发光技术原理电化学发光(ECL)是电场参与化学发光所产生的结果,是指通过施加一定的电压进行电化学反应:体系中电极表面的三丙胺TPA释放电子,进而释放质子成为自由基TPA*,同时,二价的三联吡啶钌[Ru(bpy)3]2+ 释放电子成为三价的三联吡啶钌 [Ru(bpy)3]3+。具有强氧化性的三

化学发光、免疫分析常见问题汇总

答:疱疹病毒是一种存在包膜构造的双链DNA病毒, 大量生存于自然界内, 可侵入人体和动物体会发生感染, 病毒通常经由黏膜、皮肤、神经组织等感染机体而致相关的病变。其可分成HSV-1与HSV-2两种血清类型,感染HSV-1后主要会导至咽炎、唇疱疹、角膜炎, 严重者会造成散发性脑炎等危险疾病

免疫诊断——化学发光免疫分析技术

第一节 化学发光免疫分析技术概述免疫学是生命科学和医学中一门重要的基础和前沿学科,以免疫学理论和原理为基础的免疫学检验在临床疾病的预防、诊断、治疗及预后评估中发挥重要作用。免疫学检验是依据抗原与抗体特异性反应原理,借助于各种敏感的标记、示踪(放射性核素、荧光素、酶、镧系元素、发光物质、胶体金等)技术

化学发光免疫分析新技术

化学发光免疫分析(chemiluminescence immunoassay,CLIA),是将具有高灵敏度的化学发光测定技术与高特异性的免疫反应相结合,用于各种抗原、半抗原、抗体、激素、酶、脂肪酸、维生素和药物等的检测分析技术。是继放免分析、酶免分析、荧光免疫分析和时间分辨荧光免疫分析之后发展起来的

发光免疫分析仪的常见故障处理

  化学发光免疫分析仪自动化程度较高,都具备自我诊断功能。一旦有故障发生时,仪器一般能自动检测到,显示错误信息并伴有报警声。  常见故障主要有以下几个方面。  1.压力表指示为零:进行真空压力测试,能听到泵的工作声音,但压力表指示为零。首先检查废液瓶所接的真空管,测试真空压力,判断该故障是否因漏气或

化学发光免疫分析技术的类型

  化学发光免疫分析法以标记方法的不同而分为两种:  (1)化学发光标记免疫分析法;  (2)酶标记、以化学发光底物作信号试剂的化学发光酶免疫分析法  化学发光标记免疫分析  化学发光标记免疫分析又称化学发光免疫分析(CL IA ) , 是用化学发光剂直接标记抗原或抗体的免疫分析方法。常用于标记的化

化学发光免疫分析技术的原理

  化学发光免疫分析包含两个部分, 即免疫反应系统和化学发光分析系统。化学发光分析系统是利用化学发光物质经催化剂的催化和氧化剂的氧化, 形成一个激发态的中间体, 当这种激发态中间体回到稳定的基态时, 同时发射出光子(hM) , 利用发光信号测量仪器测量光量子产额。免疫反应系统是将发光物质(在反应剂激

化学发光免疫分析技术的简介

  上世纪70年代中期Arakawe首先报道CLIA ,发展至今已经成为一种成熟的、先进的超微量活性物质检测技术,应用范围广泛,近10年发展迅猛,是目前发展和推广应用最快的免疫分析方法,也是目前最先进的标记免疫测定技术,灵敏度和精确度比酶免法、荧光法高几个数量级,可以完全替代放射免疫分析、彻底淘汰酶

化学发光免疫分析技术的原理

化学发光免疫分析包含两个部分, 即免疫反应系统和化学发光分析系统。化学发光分析系统是利用化学发光物质经催化剂的催化和氧化剂的氧化, 形成一个激发态的中间体, 当这种激发态中间体回到稳定的基态时, 同时发射出光子(hM) , 利用发光信号测量仪器测量光量子产额。免疫反应系统是将发光物质(在反应剂激发下

化学发光免疫分析技术的原理

  化学发光免疫分析包含两个部分, 即免疫反应系统和化学发光分析系统。化学发光分析系统是利用化学发光物质经催化剂的催化和氧化剂的氧化, 形成一个激发态的中间体, 当这种激发态中间体回到稳定的基态时, 同时发射出光子(hM) , 利用发光信号测量仪器测量光量子产额。免疫反应系统是将发光物质(在反应剂激

化学发光免疫分析技术的简介

  上世纪70年代中期Arakawe首先报道CLIA ,发展至今已经成为一种成熟的、先进的超微量活性物质检测技术,应用范围广泛,近10年发展迅猛,是目前发展和推广应用最快的免疫分析方法,也是目前最先进的标记免疫测定技术,灵敏度和精确度比酶免法、荧光法高几个数量级,可以完全替代放射免疫分析、彻底淘汰酶

化学发光免疫分析技术和免疫荧光技术的区别

化学发光是利用化学反应产生的能量促使产生能级跃迁,从而发光,典型的如鲁米诺检测血迹;荧光是一种光致发光现象,必须提供光源去激发分子产生能级跃迁,进而发光。使用上述两种方法进行免疫分析时,其区别很明显,化学发光无需外加光源,背景干扰小;而荧光则需要外加光源,在垂直光源的方向上检测,生物样品中的蛋白质、

化学发光免疫分析技术和免疫荧光技术的区别

化学发光是利用化学反应产生的能量促使产生能级跃迁,从而发光,典型的如鲁米诺检测血迹;荧光是一种光致发光现象,必须提供光源去激发分子产生能级跃迁,进而发光。使用上述两种方法进行免疫分析时,其区别很明显,化学发光无需外加光源,背景干扰小;而荧光则需要外加光源,在垂直光源的方向上检测,生物样品中的蛋白质、

化学发光免疫分析技术和免疫荧光技术的区别

化学发光是利用化学反应产生的能量促使产生能级跃迁,从而发光,典型的如鲁米诺检测血迹;荧光是一种光致发光现象,必须提供光源去激发分子产生能级跃迁,进而发光。使用上述两种方法进行免疫分析时,其区别很明显,化学发光无需外加光源,背景干扰小;而荧光则需要外加光源,在垂直光源的方向上检测,生物样品中的蛋白质、

化学发光免疫分析技术和免疫荧光技术的区别

化学发光是利用化学反应产生的能量促使产生能级跃迁,从而发光,典型的如鲁米诺检测血迹;荧光是一种光致发光现象,必须提供光源去激发分子产生能级跃迁,进而发光。使用上述两种方法进行免疫分析时,其区别很明显,化学发光无需外加光源,背景干扰小;而荧光则需要外加光源,在垂直光源的方向上检测,生物样品中的蛋白质、

化学发光免疫分析技术和免疫荧光技术的区别

化学发光是利用化学反应产生的能量促使产生能级跃迁,从而发光,典型的如鲁米诺检测血迹;荧光是一种光致发光现象,必须提供光源去激发分子产生能级跃迁,进而发光。使用上述两种方法进行免疫分析时,其区别很明显,化学发光无需外加光源,背景干扰小;而荧光则需要外加光源,在垂直光源的方向上检测,生物样品中的蛋白质、

化学发光免疫分析技术和免疫荧光技术的区别

化学发光是利用化学反应产生的能量促使产生能级跃迁,从而发光,典型的如鲁米诺检测血迹;荧光是一种光致发光现象,必须提供光源去激发分子产生能级跃迁,进而发光。 使用上述两种方法进行免疫分析时,其区别很明显,化学发光无需外加光源,背景干扰小;而荧光则需要外加光源,在垂直光源的方向上检测,生物样品中的蛋白质

酶联免疫与化学发光的比较

酶联免疫与化学发光的比较酶联免疫化学发光原理将医用酶同样本反应,根据反应物颜色的变化程度分析各类指标,确定诊断结果将抗原抗体同样本结合,然后由磁珠捕捉形成的反应物,再加入发光促进剂,加大反应物自发光速度和强度,用发光信号测量仪测量光子数量,据此诊断优点技术成熟,成本最低精确度高,无污染,检测速度快,

化学发光免疫分析与酶联免疫吸附检测乙肝标志物比较

  我国流行性疾病中受到乙肝病毒(HBV)感染的人群占大多数,据研究调查发现,感染人群中60岁以内患者中有8.2%携带乙肝表面抗原。自上世纪80年代以来,临床上普遍使用开展条件要求不高、设备简单的酶联免疫吸附试验(ELISA)一步法来检测患者的HBV标志物(HBV-M),但其检测结果的稳定性和准确性

如何选择合适的化学发光免疫分析技术?

选择合适的化学发光免疫分析技术可以考虑以下几个方面:检测目标:明确要检测的生物标志物或分析物。不同的化学发光免疫分析系统可能在某些特定的检测项目上具有更好的性能和准确性。检测灵敏度需求:根据检测的目的和样本中分析物的预期浓度,确定所需的检测灵敏度。如果需要检测极低浓度的物质,应选择具有高灵敏度的技术

化学发光免疫分析技术的原理是什么?

  化学发光免疫分析包含两个部分, 即免疫反应系统和化学发光分析系统。  化学发光分析系统是利用化学发光物质经催化剂的催化和氧化剂的氧化, 形成一个激发态的中间体, 当这种激发态中间体回到稳定的基态时, 同时发射出光子(hM) , 利用发光信号测量仪器测量光量子产额。  免疫反应系统是将发光物质(在

简述化学发光免疫分析技术的检测原理

化学发光免疫分析技术的检测原理是将免疫反应的特异性与化学发光反应的高灵敏度相结合。首先,将待测物质(抗原或抗体)与特异性的抗体或抗原发生免疫反应,形成免疫复合物。然后,使用化学发光物质(如吖啶酯、鲁米诺等)对免疫复合物进行标记。在特定的激发条件下,化学发光物质会发生氧化反应,从基态跃迁到激发态,当激