全自动荧光原位杂交仪概述
全自动荧光原位杂交仪是一种用于生物学领域的分析仪器,于2015年4月9日启用。 Kreatech??FISH探针的设计运用了专有的REPEAT-FREE技术。该技术利用减差杂交特异性去除所有探针中的重复元素。这些重复元素分布在感兴趣的目标区域内,去除这些重复序列使探针具有更特异的结合动力学,并不再需要额外添加阻断DNA片段(blocking DNA)。Kreatech??FISH探针使用独有的ULSTM标记技术标记FISH探针,使FISH探针的荧光标记具有更好的均一性及一致性。结合REPEAT-FREE和ULS技术,可以让FISH实验中的荧光信号更亮,背景干扰更低。此外,使用REPEAT-FREE生产的探针,杂交时间最短可缩短至4个小时(更具探针和样本类型)。而常规技术生产的探针,其杂交时间长达16小时。......阅读全文
FISH-荧光原位杂交实验
实验概要1. 通过实验了解荧光原位杂交技术的基本原理和实验技术 2. 掌握原位杂交技术的操作方法及荧光显微镜的使用方法 3. 了解其在生物学、医学领域的应用实验原理荧光原位杂交(Fluorescence in situ hybridization FISH)是一门新兴的分子细胞遗传学技术,是20
荧光原位杂交实验步骤
荧光原位杂交实验步骤1)探针变性将探针在75oC恒温水浴中温育5min,立即置0oC,5~10min,使双链DNA探针变性。2)标本变性①将制备好的染色体玻片标本于50oC培养箱中烤片2~3h。(经Giemsa染色的标本需预先在固定液中退色后再烤片)。 ②取出玻片标本,将其浸在70~75
全自动基因测序仪概述
全自动基因测序仪是一种用于食品科学技术领域的分析仪器,于2017年8月1日启用。 技术指标 通量:每次反应可生成>5G 碱基数据 每次运行至少可生成可读2500万个片段标签序列 可以在6小时内完成样品制备、测序(36bp)和数据分析,用于快速鉴定 自动化双端读取序列:读长不低于2x150个碱
全自动血培养仪概述
全自动血培养仪是一种用于生物学、基础医学、临床医学、预防医学与公共卫生学领域的分析仪器,于2013年9月17日启用。 技术指标 全自动连续检测培养瓶内微生物代谢引起的CO2浓度变化,而CO2浓度的改变可直接激活培养瓶底部包埋的对CO2浓度变化高度敏感的荧光物质,在二极管的激发下荧光物质释放荧
全自动血凝仪的概述
该类仪器的基本构成包括:样品传送及处理装置、试剂冷藏位、样品及试剂分配系统、检测系统、电子计算机、输出设备及附件等。 1. 样品传送及处理装置:一般血浆样品由传送装置依此向吸样针位置移动,多数仪器还设置了急诊位置,可以使常规标本检测必要时暂停以服从免疫比浊法将被检物与其相应抗体混合形成复合物,
原位杂交(In-Situ-Hybridization,ISH)与荧光原位杂交(五)
⑦60伏电泳过夜。 ⑧取出凝胶,水中浸泡2次,每次5min。 ⑨室温下将胶浸到50mmol/L NaOH和10mmol/l NaCl中45min,水解高分子RNA,以增强转印。 ⑩室温下将胶浸到0.1mol/L Tris·HCl (Ph7.5)中45min,使胶中和。
原位杂交(In-Situ-Hybridization,ISH)与荧光原位杂交(四)
(2)硝酸纤维素滤膜吸印。①将胶切成合适大小,切去右上角作为记号。②将胶放进盛有变性缓冲液(1.5mol/l NaCl, 0.5mol/L NaOH)的盘中轻摇动15min。③换到中和缓冲液(1mol/L Tris·HCl , pH8.0, 1.5mol/L NaCl)中轻摇动30min。④裁一张硝
原位杂交(In-Situ-Hybridization,ISH)与荧光原位杂交(三)
(1)DAN斑点杂交①先将膜在水中浸湿,再放到15×SSC中。②将DNA样品溶于水或TE,煮沸5min,冰中速冷。③用铅笔在滤膜上标好位置,将DNA点样于膜上。每个样品一般点50μl(2~10μg DNA)。④将膜烘干,密封保存备用。(2)RNA斑点杂交:与上法类似,每个样品至多加10μg总RNA(
原位杂交(In-Situ-Hybridization,ISH)与荧光原位杂交(六)
夹心杂交法可用滤膜和小珠固定吸附探针,使用小珠可更好地进行标准化试验和更容易对小量样品进行操作。Dahlen 等利用微孔板进行夹心杂交,可同时进行大量样品检测,他们先吸取DNA探针加到凹板中,然后用紫外线照射使其固定到塑料板上。用微孔板进行夹心杂交还可直接用于PCR技术。应用光敏生物标记探针
原位杂交(In-Situ-Hybridization,ISH)与荧光原位杂交(一)
是用标记的核酸探针,使用非放射检测系统或放射自显影系统,在组织切片、细胞涂片及染色体制片上等对核酸进行定性、定位和相对定量研究的一种分子生物学方法,具有灵敏、特异、直观等优点。已逐渐成为分子生物学和分子病理学的常见技术之一,广泛应用于肿瘤生物学、血液病理学、遗传、微生物学、细胞和分子生物学、神经内分
原位杂交(In-Situ-Hybridization,ISH)与荧光原位杂交(二)
5.洗膜 取出塑料袋,用剪刀剪开,小心取出滤膜,立即浸入盛有2×SSC和 0.5%SDS溶液的盘中,室温下漂洗5min。再将滤膜移入2×SSC和0.1%SDS溶液中,室温下洗涤15min(轻轻摇动)。然后将滤膜移入 0.1×SSC和0.5%SDS溶液中;68℃轻轻摇动保温2h,更换缓冲液后继
荧光测硫仪概述
荧光测硫仪工作原理: 荧光测硫仪是采用物理分析方法,快速测定水泥中SO3的百分含量,能让水泥企业即时调整水泥中石膏的掺入量并预知用该种水泥生产的混凝土的凝固时间,还可以应用于需要分析SO3百分含量的其他场合,比水泥化学分析法和石膏化学分析法准确、快捷。 荧光测硫仪适用范围: 荧光测硫仪(硫含
荧光原位杂交技术的原理
生命科学的发展,生物技术的进步使我们对疾病本质的认识不断地深入,也使我们拥有更多新的治疗方法和药物应对疾病的威胁。如何准确有效地利用这些新的治疗方法和药物治愈疾病是我们迫切需要研究的内容。如何对疾病进行正确的分型和诊断却是上述工作的基础。只有全面地把握病情,并在此基础上进行准确的判断和分析,才能为病
荧光原位杂交的发展历程
位点数目及检测目标 在FISH 技术基本确立之后,FISH 不仅用于单基因或核酸检测,FISH 技术的进一步发展扩展到多色FISH 多基因位点同时检测,从基因检测发展到基因组、染色体、活细胞中转录产物mRNAs 原位检测以及组织水平的核酸检测,并且在今后的研究中还有可能应用到整个生物体的检测。
-荧光原位杂交的技术优点
与其他原位杂交技术相比,荧光原位杂交具有很多优点,主要体现在:①FISH不需要放射性同位素标记,更经济安全。②FISH的实验周期短,探针稳定性高,特异性好,定位准确,能迅速得到结果。③FISH通过多次免疫化学反应,使杂交信号增强,灵敏度提高,其灵敏度与放射性探针相当。④多色FISH通过在同一个核中显
荧光原位杂交技术的背景
对于利用rRNA的荧光原位杂交来说,如下原因可导致较低的荧光信号强度: 较低的细胞核糖体含量 较低的细胞周边的通透性 较低的目标序列可接触性(由于rRNA的折叠产生的构象,有些位置与rRNA分子内其他链或其他rRNA或蛋白紧密接触,从而使探针无法和目标序列杂交) 为检验细胞中的目标序列是
荧光原位杂交的特点介绍
原位杂交的探针按标记分子类型分为放射性标记和非放射性标记。用同位素标记的放射性探针优势在于对制备样品的要求不高,可以通过延长曝光时间加强信号强度,故较灵敏。缺点是探针不稳定、自显影时间长、放射线的散射使得空间分辨率不高、及同位素操作较繁琐等。采用荧光标记系统则可克服这些不足,这就是FISH技术。
荧光原位杂交技术的背景
对于利用rRNA的荧光原位杂交来说,如下原因可导致较低的荧光信号强度: 较低的细胞核糖体含量 较低的细胞周边的通透性 较低的目标序列可接触性(由于rRNA的折叠产生的构象,有些位置与rRNA分子内其他链或其他rRNA或蛋白紧密接触,从而使探针无法和目标序列杂交) 为检验细胞中的目标序列是
荧光原位杂交技术的应用
该技术不但可用于已知基因或序列的染色体定位,而且也可用于未克隆基因或遗传标记及染色体畸变的研究。在基因定性、定量、整合、表达等方面的研究中颇具优势。 FISH最初用于中期染色体。从正在分化的细胞核中制备的这种染色体是高度凝缩的,每条染色体都具有可识别的形态,它们染色后将显现出特征性的着丝粒位置
荧光原位杂交技术的问世
荧光标记技术(FISH)指利用一些能发射荧光的物质共价结合或物理吸附在所要研究分子的某个基团上,利用它的荧光特性来提供被研究对象的信息。 上述试题的技术是在原荧光标记技术基础上发展起来的荧光原位杂交技术。 1969年,Gall和Pardue等首次将同位素探针用于原位杂交实验,获得成功。 1
荧光原位杂交技术的特点
原位杂交的探针按标记分子类型分为放射性标记和非放射性标记。用同位素标记的放射性探针优势在于对制备样品的要求不高,可以通过延长曝光时间加强信号强度,故较灵敏。缺点是探针不稳定、自显影时间长、放射线的散射使得空间分辨率不高、及同位素操作较繁琐等。采用荧光标记系统则可克服这些不足,这就是FISH技术。
荧光原位杂交的方法介绍
荧光原位杂交(Fluorescence in situ hybridization,FISH)是20世纪80年代末在放射性原位杂交技术基础上发展起来的一种非放射性分子生物学和细胞遗传学结合的新技术,是以荧光标记取代同位素标记而形成的一种新的原位杂交方法。
荧光原位杂交的技术原理
荧光原位杂交技术技术原理是将荧光素直接或间接标记的核酸探针[或生物素、地高辛、dinit rophenyl(I)NP)、aminoacetylAAFfluorine(AAF)等标记的核酸探针与待测样本中的核酸序列按照碱基互补配对的原则进行杂交,经洗涤后直接在荧光显微镜下观察。荧光原位杂交技术是一种重
荧光原位杂交的技术原理
荧光原位杂交技术技术原理是将荧光素直接或间接标记的核酸探针[或生物素、地高辛、dinit rophenyl(I)NP)、aminoacetylAAFfluorine(AAF)等标记的核酸探针与待测样本中的核酸序列按照碱基互补配对的原则进行杂交,经洗涤后直接在荧光显微镜下观察。荧光原位杂交技术是一种重
荧光原位杂交的技术特点
与其他原位杂交技术相比,荧光原位杂交具有很多优点,主要体现在:①FISH不需要放射性同位素标记,更经济安全。②FISH的实验周期短,探针稳定性高,特异性好,定位准确,能迅速得到结果。③FISH通过多次免疫化学反应,使杂交信号增强,灵敏度提高,其灵敏度与放射性探针相当。④多色FISH通过在同一个核中显
荧光原位杂交的主要应用
作为一种可视化特定DNA序列的分子细胞遗传学技术,荧光原位杂交技术目前被广泛应用于染色体畸变。如非整倍体、染色体重组。其基本流程包括探针标记、探针的变性、样本变性、杂交和荧光信号采集。荧光原位杂交技术在基因定性、定量,整合、表达等方面的研究中颇具优势,目前已经被广泛应用于遗传病诊断、病毒感染分析、产
荧光原位杂交的技术优点
与其他原位杂交技术相比,荧光原位杂交具有很多优点,主要体现在:①FISH不需要放射性同位素标记,更经济安全。②FISH的实验周期短,探针稳定性高,特异性好,定位准确,能迅速得到结果。③FISH通过多次免疫化学反应,使杂交信号增强,灵敏度提高,其灵敏度与放射性探针相当。④多色FISH通过在同一个核中显
荧光原位杂交的技术原理
荧光原位杂交技术技术原理是将荧光素直接或间接标记的核酸探针[或生物素、地高辛、dinit rophenyl(I)NP)、aminoacetylAAFfluorine(AAF)等标记的核酸探针与待测样本中的核酸序列按照碱基互补配对的原则进行杂交,经洗涤后直接在荧光显微镜下观察。荧光原位杂交技术是一种重
荧光原位杂交的技术优点
与其他原位杂交技术相比,荧光原位杂交具有很多优点,主要体现在:①FISH不需要放射性同位素标记,更经济安全。②FISH的实验周期短,探针稳定性高,特异性好,定位准确,能迅速得到结果。③FISH通过多次免疫化学反应,使杂交信号增强,灵敏度提高,其灵敏度与放射性探针相当。④多色FISH通过在同一个核中显
荧光原位杂交的技术分类
(一)多彩色荧光原位杂交(multicolor fluorescence in situ hybridization,mFISH)mFISH是在荧光原位杂交基础上发展起来的新技术,它不仅具有FISH的优点,而且克服了FISH的许多局限,其最大特点是可将多次繁顼的FISH实验和多种不同的基因定位在一次