全自动荧光原位杂交仪概述
全自动荧光原位杂交仪是一种用于生物学领域的分析仪器,于2015年4月9日启用。 Kreatech??FISH探针的设计运用了专有的REPEAT-FREE技术。该技术利用减差杂交特异性去除所有探针中的重复元素。这些重复元素分布在感兴趣的目标区域内,去除这些重复序列使探针具有更特异的结合动力学,并不再需要额外添加阻断DNA片段(blocking DNA)。Kreatech??FISH探针使用独有的ULSTM标记技术标记FISH探针,使FISH探针的荧光标记具有更好的均一性及一致性。结合REPEAT-FREE和ULS技术,可以让FISH实验中的荧光信号更亮,背景干扰更低。此外,使用REPEAT-FREE生产的探针,杂交时间最短可缩短至4个小时(更具探针和样本类型)。而常规技术生产的探针,其杂交时间长达16小时。......阅读全文
全自动荧光原位杂交仪概述
全自动荧光原位杂交仪是一种用于生物学领域的分析仪器,于2015年4月9日启用。 Kreatech??FISH探针的设计运用了专有的REPEAT-FREE技术。该技术利用减差杂交特异性去除所有探针中的重复元素。这些重复元素分布在感兴趣的目标区域内,去除这些重复序列使探针具有更特异的结合动力学,并
概述荧光原位杂交的技术应用
作为一种可视化特定DNA序列的分子细胞遗传学技术,荧光原位杂交技术目前被广泛应用于染色体畸变。如非整倍体、染色体重组。其基本流程包括探针标记、探针的变性、样本变性、杂交和荧光信号采集。 荧光原位杂交技术在基因定性、定量,整合、表达等方面的研究中颇具优势,目前已经被广泛应用于遗传病诊断、病毒感染
全自动原位杂交仪简介
NAI7000原位杂交技术以来的30年内,该技术在各个领域得到了广泛应用。但在大部分的研究工作中,杂交信号都是用光学显微镜进行观察并记录的,这样在分辨率上就存在很大的限制,为了对检测的特异核酸进行更精确的亚细胞定位,以便将组织、细胞和染色体等水平上DNA或RNA定位与超微结构相互联系起来,许多学
概述荧光原位杂交的技术发展
(一)多彩色荧光原位杂交(multicolor fluorescence in situ hybridization,mFISH) mFISH是在荧光原位杂交基础上发展起来的新技术,它不仅具有FISH的优点,而且克服了FISH的许多局限,其最大特点是可将多次繁顼的FISH实验和多种不同的基因定
荧光原位杂交的荧光原位杂交
荧光原位杂交(fluorescence in situ hybridization,FISH)是在20世纪80年代末在放射性原位杂交技术的基础上发展起来的一种非放射性分子细胞遗传技术,以荧光标记取代同位素标记而形成的一种新的原位杂交方法。探针首先与某种介导分子(reporter molecule)结
原位杂交仪—荧光原位杂交相关解释
荧光原位杂交(fluorescence in situ hybridization,FISH)是在20世纪80年代末在放射性原位杂交技术的基础上发展起来的一种非放射性分子细胞遗传技术,以荧光标记取代同位素标记而形成的一种新的原位杂交方法,探针首先与某种介导分子(reporter molecule
荧光原位杂交实验——荧光原位杂交技术
荧光原位杂交可应用于:(1)动植物基因组结构研究;(2)染色体精细结构变异分析;(3)病毒感染分析;(4)肿瘤遗传学和基因组进化研究。实验方法原理用已知的标记单链核酸为探针,按照碱基互补的原则,与待检材料中未知的单链核酸进行异性结合,形成可被检测的杂交双链核酸。由于DNA分子在染色体上是沿着染色体纵
全自动免疫荧光分析仪的概述
全自动免疫荧光分析仪是基于免疫荧光分析这一技术上的一款仪器,是属于我国规定的二类医疗器械。免疫荧光分析作为免疫分析法的一种,FIA同样存在两种模式,即竞争型和夹心型。其中 竞争型(以标记抗原的竞争型为例)的测定原理是基于未标记的抗原(Ag)和标记抗原(Ag-L)竞争结合有限的抗体(Ab)而实现的
原位杂交与荧光原位杂交
一、原位杂交( In Situ Hybridization,ISH) 是用标记的核酸探针,使用非放射检测系统或放射自显影系统,在组织切片、细胞涂片及染色体制片上等对核酸进行定性、定位和相对定量研究的一种分子生物学方法,具有灵敏、特异、直观等优点。已逐渐成为分子生物学和分子病理学的常见技术之一,广泛
原位杂交与荧光原位杂交
一、原位杂交( In Situ Hybridization,ISH) 是用标记的核酸探针,使用非放射检测系统或放射自显影系统,在组织切片、细胞涂片及染色体制片上等对核酸进行定性、定位和相对定量研究的一种分子生物学方法,具有灵敏、特异、直观等优点。已逐渐成为分子生物学和分子病理学的常见技术之一,广泛
原位杂交与荧光原位杂交
一、原位杂交( In Situ Hybridization,ISH) 是用标记的核酸探针,使用非放射检测系统或放射自显影系统,在组织切片、细胞涂片及染色体制片上等对核酸进行定性、定位和相对定量研究的一种分子生物学方法,具有灵敏、特异、直观等优点。已逐渐成为分子生物学和分子病理学的常见技术之一,广泛应
概述荧光原位杂交位点数目及检测目标
在FISH 技术基本确立之后,FISH 不仅用于单基因或核酸检测,FISH 技术的进一步发展扩展到多色FISH 多基因位点同时检测,从基因检测发展到基因组、染色体、活细胞中转录产物mRNAs 原位检测以及组织水平的核酸检测,并且在今后的研究中还有可能应用到整个生物体的检测。早期的探针较大,是通过
全自动微生物免疫荧光分析仪概述
全自动微生物免疫荧光分析仪是一种用于化学领域的分析仪器,于2016年12月30日启用。 技术指标 1.使用ELFA(酶联荧光技术),检测病原体得出定性/定量结果。 2.使用免液浓缩技术,富集病原体。 3.反应时间:结果报告时间由30分钟到2小时 4.检测系统:仪器内部设置荧光扫描器,该扫描器
全自动微生物免疫荧光分析仪概述
全自动微生物免疫荧光分析仪是一种用于化学领域的分析仪器,于2016年12月30日启用。 技术指标 1.使用ELFA(酶联荧光技术),检测病原体得出定性/定量结果。 2.使用免液浓缩技术,富集病原体。 3.反应时间:结果报告时间由30分钟到2小时 4.检测系统:仪器内部设置荧光扫描器,该扫描器
荧光原位杂交介绍
荧光原位杂交(fluorescence in situ hybridization,FISH)是在20世纪80年代末在放射性原位杂交技术的基础上发展起来的一种非放射性分子细胞遗传技术,以荧光标记取代同位素标记而形成的一种新的原位杂交方法,探针首先与某种介导分子(reporter molecule)结
荧光原位杂交实验
实验方法原理 荧光原位杂交(Fluorescence in situ hybridization FISH)是一门新兴的分子细胞遗传学技术,是20世纪80年代末期在原有的放射性原位杂交技术的基础上发展起来的一种非放射性原位杂交技术。目前这项技术已经广泛应用于动植物基因组结构研究、染色体精细结构变
RNA荧光原位杂交
原位杂交:在研究DNA分子复制原理的基础上发展起来的一种技术。其基本原理是两条核苷酸单链片段,在适宜的条件下,能过氢键结合,形成DNA-DNA、DNA-RNA或 RNA-RNA 双键分子的特点,应带有标记的(有放射性同位素,如3H、35S、32P、荧光素生物素、地高辛等非放射性物质)DAN或 RNA
荧光原位杂交实验
实验方法原理 用已知的标记单链核酸为探针,按照碱基互补的原则,与待检材料中未知的单链核酸进行异性结合,形成可被检测的杂交双链核酸。由于DNA分子在染色体上是沿着染色体纵轴呈线性排列,因而可以探针直接与染色体进行杂交从而将特定的基因在染色体上
荧光原位杂交实验
实验原理荧光原位杂交(Fluorescence in situ hybridization FISH)是一门新兴的分子细胞遗传学技术,是20世纪80年代末期在原有的放射性原位杂交技术的基础上发展起来的一种非放射性原位杂交技术。目前这项技术已经广泛应用于动植物基因组结构研究、染色体精细结构变异分析、
FISH荧光原位杂交实验(原位杂交)
1. 实验目的 通过实验了解荧光原位杂交技术的基本原理和在生物学、医学领域的应用。掌握原位杂交技术的操作方法,熟练掌握荧光显微镜的使用方法。2. 实验原理 荧光原位杂交(Fluorescence in situ hybridization FISH)是一门新兴的分子细胞遗
全自动活细胞实时荧光成像系统概述
全自动活细胞实时荧光成像系统是一种用于生物学领域的分析仪器,于2018年12月11日启用。 1、显微镜采用全封闭箱式设计,并可通过机身TFT触摸屏进行自动进样,调用预设实验程序自动进行成像实验。 2、全自动成像方式,无需任何手动调节即可实现普通明场、斜照明和高衬度浮雕效果PGC成像,并可在荧
荧光原位杂交的应用
该技术不但可用于已知基因或序列的染色体定位,而且也可用于未克隆基因或遗传标记及染色体畸变的研究。在基因定性、定量、整合、表达等方面的研究中颇具优势。 FISH最初用于中期染色体。从正在分化的细胞核中制备的这种染色体是高度凝缩的,每条染色体都具有可识别的形态,它们染色后将显现出特征性的着丝粒位置
荧光原位杂交技术简介
荧光原位杂交(Fluorescence in situ hybridization,FISH)是20世纪80年代末在放射性原位杂交技术基础上发展起来的一种非放射性分子生物学和细胞遗传学结合的新技术,是以荧光标记取代同位素标记而形成的一种新的原位杂交方法。
荧光原位杂交的简介
荧光原位杂交(fluorescence in situ hybridization, FISH)是在20世纪80年代末在放射性原位杂交技术的基础上发展起来的一种非放射性分子细胞遗传技术,以荧光标记取代同位素标记而形成的一种新的原位杂交方法,探针首先与某种介导分子(reporter molecul
荧光原位杂交的原理
荧光原位杂交(Fluorescence in situ hybridization,FISH)是20世纪80年代末在放射性原位杂交技术基础上发展起来的一种非放射性分子生物学和细胞遗传学结合的新技术,是以荧光标记取代同位素标记而形成的一种新的原位杂交方法。
荧光原位杂交技术详解
1974年Evans首次将染色体显带技术和染色体原位杂交联合应用,提高了定位的准确性。20世纪70年代后期人们开始探讨荧光标记的原位杂交,即FISH技术。1981年Harper成功地将单拷贝的DNA序列定位到G显带标本上,标志着染色体定位技术取得了重要进展。20世纪90年代,随着人类基因组计划的
荧光原位杂交的背景
对于利用rRNA的荧光原位杂交来说,如下原因可导致较低的荧光信号强度: 较低的细胞核糖体含量 较低的细胞周边的通透性 较低的目标序列可接触性(由于rRNA的折叠产生的构象,有些位置与rRNA分子内其他链或其他rRNA或蛋白紧密接触,从而使探针无法和目标序列杂交) 为检验细胞中的目标序列是
FISH-荧光原位杂交实验
实验概要1. 通过实验了解荧光原位杂交技术的基本原理和实验技术 2. 掌握原位杂交技术的操作方法及荧光显微镜的使用方法 3. 了解其在生物学、医学领域的应用实验原理荧光原位杂交(Fluorescence in situ hybridization FISH)是一门新兴的分子细胞遗传学技术,是20
荧光原位杂交的发展
荧光原位杂交技术问世于20世纪70年代后期。1977年,荧光标记的抗体被应用于识别特异性DNA—RNA杂交I I。1980年,J.G.Baunlan等将应用化学偶联的方法将荧光素结合到RNA探针上用于直接快速的特异性靶序列检测。
荧光原位杂交的概念
荧光原位杂交(Fluorescence in situ hybridization,FISH)是20世纪80年代末在放射性原位杂交技术基础上发展起来的一种非放射性分子生物学和细胞遗传学结合的新技术,是以荧光标记取代同位素标记而形成的一种新的原位杂交方法。