X射线荧光光谱仪检测分析原理
X射线荧光光谱分析仪可以对各种样品的元素组成进行定量分析,包括压片、融珠、粉末液体、甚至是庞大的样品。它使用一种高功率X射线管达到了检测限低和测量时间短的效果。具有重现性好,测量速度快,灵敏度高的特点。 X射线荧光光谱分析仪物理原理 当材料暴露在短波长X光检查,或伽马射线,其组成原子可能发生电离,如果原子是暴露于辐射与能源大于它的电离势,足以驱逐内层轨道的电子,然而这使原子的电子结构不稳定,在外轨道的电子会“回补”进入低轨道,以填补下来的洞。在“回补”的过程会释出多余的能源,光子能量是相等两个轨道的能量差异的。因此,物质放射出的辐射,这是原子的能量特性。广泛应用于机械加工、钢铁贸易、船舶制造、工程公司、冶金等企业中。 X射线荧光光谱分析仪由激发系统、分光系统以及仪器控制和数据处理系统组成,具有的高灵敏度与宽动态范围的特性使其成为了同等级中性能高的微型光谱仪。其超高的性能可以大大提高吸光度、反射率、荧光与拉曼检测的度。 ......阅读全文
X射线荧光光谱仪检测分析原理
X射线荧光光谱分析仪可以对各种样品的元素组成进行定量分析,包括压片、融珠、粉末液体、甚至是庞大的样品。它使用一种高功率X射线管达到了检测限低和测量时间短的效果。具有重现性好,测量速度快,灵敏度高的特点。 X射线荧光光谱分析仪物理原理 当材料暴露在短波长X光检查,或伽马射线,其组成原子可能发生
X射线荧光光谱仪原理分析
X荧光光谱仪(XRF)由激发源(X射线管)和探测系统构成。X射线管产生入射X射线(一次X射线),激发被测样品。受激发的样品中的每一种元素会放射出二次X射线,并且不同的元素所放射出的二次X射线具有特定的能量特性或波长特性。探测系统测量这些放射出来的二次X射线的能量及数量。然后,仪器软件将探测系统所收集
X射线荧光光谱仪原理
X射线荧光光谱仪原理 X射线荧光光谱仪主要由激发源(X射线管)和探测系统构成。其原理就是:X射线管通过产生入射X射线(一次X射线),来激发被测样品。 受激发的样品中的每一种元素会放射出二次X射线(又叫X荧光),并且不同的元素所放射出的二次X射线具有特定的能量特性或波长特性。探测系统测量这
X射线荧光光谱仪的分析原理概括
X射线荧光光谱仪的分析原理概括X射线荧光光谱仪(X-rayFluorescenceSpectrometer,简称:XRF光谱仪),是一种快速的、非破坏式的物质测量方法。X射线荧光(X-rayfluorescence,XRF)是用高能量X射线或伽玛射线轰击材料时激发出的次级X射线。这种现象被广泛用于元
X射线荧光光谱仪的原理
X荧光光谱仪(XRF)由激发源(X射线管)和探测系统构成。X射线管产生入射X射线(一次X射线),激发被测样品。受激发的样品中的每一种元素会放射出二次X射线,并且不同的元素所放射出的二次X射线具有特定的能量特性或波长特性。探测系统测量这些放射出来的二次X射线的能量及数量。然后,仪器软件将探测系统所收集
X射线荧光光谱仪的原理
X射线荧光的物理原理:当材料暴露在短波长X光检查,或伽马射线,其组成原子可能发生电离,如果原子是暴露于辐射与能源大于它的电离势,足以驱逐内层轨道的电子,然而这使原子的电子结构不稳定,在外轨道的电子会“回补”进入低轨道,以填补遗留下来的洞。在“回补”的过程会释出多余的能源,光子能量是相等两个轨道的能量
X射线荧光光谱仪的原理
X射线荧光的物理原理:当材料暴露在短波长X光检查,或伽马射线,其组成原子可能发生电离,如果原子是暴露于辐射与能源大于它的电离势,足以驱逐内层轨道的电子,然而这使原子的电子结构不稳定,在外轨道的电子会“回补”进入低轨道,以填补遗留下来的洞。在“回补”的过程会释出多余的能源,光子能量是相等两个轨道的能量
X射线荧光光谱仪的原理
X射线荧光的物理原理:当材料暴露在短波长X光检查,或伽马射线,其组成原子可能发生电离,如果原子是暴露于辐射与能源大于它的电离势,足以驱逐内层轨道的电子,然而这使原子的电子结构不稳定,在外轨道的电子会“回补”进入低轨道,以填补遗留下来的洞。在“回补”的过程会释出多余的能源,光子能量是相等两个轨道的能量
X射线荧光光谱仪的原理
X射线荧光的物理原理:当材料暴露在短波长X光检查,或伽马射线,其组成原子可能发生电离,如果原子是暴露于辐射与能源大于它的电离势,足以驱逐内层轨道的电子,然而这使原子的电子结构不稳定,在外轨道的电子会“回补”进入低轨道,以填补遗留下来的洞。在“回补”的过程会释出多余的能源,光子能量是相等两个轨道的能量
X射线荧光光谱仪的原理
X射线荧光的物理原理:当材料暴露在短波长X光检查,或伽马射线,其组成原子可能发生电离,如果原子是暴露于辐射与能源大于它的电离势,足以驱逐内层轨道的电子,然而这使原子的电子结构不稳定,在外轨道的电子会“回补”进入低轨道,以填补遗留下来的洞。在“回补”的过程会释出多余的能源,光子能量是相等两个轨道的能量
X射线荧光光谱仪工作原理
2.1 X射线荧光的物理原理 X射线是电磁波谱中的某特定波长范围内的电磁波,其特性通常用能量(单位:千电子伏特,keV)和波长(单位nm)描述。 X射线荧光是原子内产生变化所致的现象。一个稳定的原子结构由原子核及核外电子组成。其核外电子都以各自特有的能量在各自的固定轨道上运行,内层电子(如K层)在足
X射线荧光光谱仪的原理
X射线荧光的物理原理:当材料暴露在短波长X光检查,或伽马射线,其组成原子可能发生电离,如果原子是暴露于辐射与能源大于它的电离势,足以驱逐内层轨道的电子,然而这使原子的电子结构不稳定,在外轨道的电子会“回补”进入低轨道,以填补遗留下来的洞。在“回补”的过程会释出多余的能源,光子能量是相等两个轨道的能量
X射线荧光光谱仪的原理
X射线荧光光谱仪具有重现性好,测量速度快,灵敏度高的特点。能分析B(5)~U(92)之间所有元素。样品可以是固体、粉末、熔融片,液体等,分析对象适用于炼钢、有色金属、水泥、陶瓷、石油、玻璃等行业样品。无标半定量方法可以对各种形状样品定性分析,并能给出半定量结果,结果准确度对某些样品可以接近定量水
X射线荧光光谱仪的原理
X射线荧光的物理原理:当材料暴露在短波长X光检查,或伽马射线,其组成原子可能发生电离,如果原子是暴露于辐射与能源大于它的电离势,足以驱逐内层轨道的电子,然而这使原子的电子结构不稳定,在外轨道的电子会“回补”进入低轨道,以填补遗留下来的洞。在“回补”的过程会释出多余的能源,光子能量是相等两个轨道的能量
X射线荧光光谱仪的构成与分析原理
X射线荧光光谱仪 (XRF)由激发源(X射线管)和探测系统构成。X射线管产生发射X射线(一次X射线),激发被测样品。受激发的样品中的每一种元素都会放射出二次X射线,并且不同的元素所放射出的二次X射线具有特定的能量特性或波长特性。探测系统测量这些放射出来的二次X射线的能量及数量。然后,仪器软件将探测
X射线荧光光谱仪的构成与分析原理
X射线荧光光谱仪 (XRF)由激发源(X射线管)和探测系统构成。X射线管产生发射X射线(一次X射线),激发被测样品。受激发的样品中的每一种元素都会放射出二次X射线,并且不同的元素所放射出的二次X射线具有特定的能量特性或波长特性。探测系统测量这些放射出来的二次X射线的能量及数量。然后,仪器软件将
X射线荧光光谱仪中的X射线原理科普
X射线荧光光谱仪是一种快速的、非破坏式的物质测量方法。x射线具有很高的穿透本领,能透过许多对可见光不透明的物质,如墨纸、木料等。这种肉眼看不见的射线可以使很多固体材料发生可见的荧光,使照相底片感光以及空气电离等效应。X射线初用于医学成像诊断和X射线结晶学。X射线也是游离辐射等这一类对人体有危害的
X射线荧光光谱仪-检测标准
JJG810-1993《波长色散X射线荧光光谱仪》检定周期为1年。
X射线荧光光谱仪X射线防护系统的故障分析
为了防止X射线泄漏,高压发生器只有在射线防护系统正常的情况下才能启动。射线防护系统正常与否,主要检查以下二部分: 1、面板的位置是否正常。X射线荧光光谱仪是一个封闭系统,面板是最外层的射线防护装置,如果有一块面板不到位,仪器就有射线泄漏的可能。因此,每块面板上都有位置接触传感器,面板没有完全合
X射线荧光光谱仪X射线防护系统故障分析
为了防止X射线泄漏,高压发生器只有在射线防护系统正常的情况下才能启动。射线防护系统正常与否,主要检查以下二部分: 1、面板的位置是否正常。X射线荧光光谱仪是一个封闭系统,面板是最外层的射线防护装置,如果有一块面板不到位,仪器就有射线泄漏的可能。因此,每块面板上都有位置接触传感器,面板没有完全合上
x射线荧光光谱仪的工作原理
当能量高于原子内层电子结合能的高能X射线与原子发生碰撞时,驱逐一个内层电子而出现一个空穴,使整个原子体系处于不稳定的激发态,激发态原子寿命约为10-12-10-14s,然后自发地由能量高的状态跃迁到能量低的状态。这个过程称为驰豫过程。驰豫过程既可以是非辐射跃迁,也可以是辐射跃迁。当较外层的电子跃迁到
日立X射线荧光光谱仪操作原理
X射线荧光光谱仪物理原理 当材料暴露在短波长X光检查,或伽马射线,其组成原子可能发生电离,如果原子是暴露于辐射与能源大于它的电离势,足以驱逐内层轨道的电子,然而这使原子的电子结构不稳定,在外轨道的电子会“回补”进入低轨道,以填补下来的洞。在“回补”的过程会释出多余的能源,光子能量是相等两个轨道的
X射线荧光光谱仪的技术原理
X射线荧光光谱仪是利用初级X射线光子或其他微观离子激发待测物质中的原子,使之产生荧光(次级X射线)而进行物质成分分析和化学态研究的方法。按激发、色散和探测方法的不同,分为X射线光谱法(波长色散)和X射线能谱法(能量色散)。具有重现性好,测量速度快,灵敏度高的特点。能分析F(9)~U(92)之间所有元
X射线荧光光谱仪的使用原理
采用X射线荧光光谱仪(X-rayFluorescenceSpectrometer,简称:XRF光谱仪)测量,是一种快速的、非破坏式的物质测量方法。X射线荧光(X-rayfluorescence,XRF)是用高能量X射线或伽玛射线轰击材料时激发出的次级X射线。 X射线荧光分析被广泛应用于元素和化学分析
X射线荧光光谱仪的工作原理
X射线荧光分析技术作为一种快速分析手段,为我国的相关生产企业提供了一种可行的、低成本的、并且是及时的,检测、筛选和控制有害元素含量的有效途径;相对于其他分析方法。 样品可以是固体、粉末、熔融片,液体等,分析对象适用于炼钢、有色金属、水泥、陶瓷、石油、玻璃等行业样品。 X射线荧光光谱仪的工作
X射线荧光光谱仪原理的简介
X射线荧光分析仪是一种比较新型的可以对多元素进行快速同时测定的仪器。在X射线激发下,被测元素原子的内层电子发生能级跃迁而发出次级X射线(X-荧光)。 X射线是一种波长较短的电磁辐射,通常是指能量范围在0.1~100 keV的光子。X射线与物质的相互作用主要有荧光、吸收和散射三种。 XRF工作
X射线荧光分析的原理及应用
X射线荧光分析(XRF)——是对任何种类的样品进行元素分析的好分析技术,无论必需分析的样品是液体、固体还是粉末。XRF可以将高的准确度和精密度与简单和快速的样品准备结合,对铍 (Be) 到铀 (U) 的元素喜迁分析,浓度范围从 100 % 到低至亚 ppm 级。 作为一种确定各种材料化学组成的
X射线荧光分析的原理及应用
X射线荧光分析(XRF)——是对任何种类的样品进行元素分析的好分析技术,无论必需分析的样品是液体、固体还是粉末。XRF可以将高的准确度和精密度与简单和快速的样品准备结合,对铍 (Be) 到铀 (U) 的元素喜迁分析,浓度范围从 100 % 到低至亚 ppm 级。 作为一种确定各种材料
X射线荧光光谱仪中X射线的由来和性质分析
X射线荧光光谱仪(XRF)由激发源(X射线管)和探测系统构成。X射线管产生入射X射线(一次X射线),激发被测样品。受激发的样品中的每一种元素会放射出二次X射线,并且不同的元素所放射出的二次X射线具有特定的能量特性或波长特性。探测系统测量这些放射出来的二次X射线的能量及数量。然后,仪器软件将探测系统所
X-射线荧光光谱仪
用X射线照射试样时,试样可以被激发出各种波长的荧光X射线,需要把混合的X射线按波长(或能量)分开,分别测量不同波长(或能量)的X射线的强度,以进行定性和定量分析,为此使用的仪器叫X射线荧光光谱仪。由于X光具有一定波长,同时又有一定能量,因此,X射线荧光光谱仪有两种基本类型:波长色散型和能量色散型。图