Antpedia LOGO WIKI资讯

研究团队在高能量密度锌锰电池研究中取得进展

水系锌锰电池因其丰富的自然储量、高理论容量、高电导率和本征安全性等特质引起关注。然而,由于正极材料的结构稳定性和电解液-电极材料间的相互作用,二氧化锰正极材料在充放电循环中易发生结构退化和其他副反应,阻碍了锌锰可充电池的实际应用。 基于此,中国科学院苏州纳米技术与纳米仿生研究所研究员邸江涛、李清文团队在经典的MnO2/MnOOH转换反应基础上引入二氧化锰的沉积溶解反应,可以将电极活性物质因歧化反应溶出的锰离子再沉积到电极上,实现了高循环稳定性和高能量密度的锌锰电池。 该研究通过原位刻蚀技术在碳纳米管三维网络体内部沉积二氧化锰作为电池正极。自支撑的泡沫电极具有高达98.6%的孔隙率和63 m2 g-1的比表面积,可以适应MnO2沉积/溶解过程中的体积变化,并提供有效的电荷和离子传输路径。此外,将电解液中Mn2+浓度调节到一个临界范围,可以在中性电解液中实现MnO2/Mn2+氧化还原的可逆转化而不涉及氧的析出。附加的MnO2......阅读全文

研究团队在高能量密度锌锰电池研究中取得进展

  水系锌锰电池因其丰富的自然储量、高理论容量、高电导率和本征安全性等特质引起关注。然而,由于正极材料的结构稳定性和电解液-电极材料间的相互作用,二氧化锰正极材料在充放电循环中易发生结构退化和其他副反应,阻碍了锌锰可充电池的实际应用。  基于此,中国科学院苏州纳米技术与纳米仿生研究所研究员邸江涛、李

高能量密度锰基混合单液流电池成功开发

近日,中科院大连化学物理研究所研究员李先锋团队提出了一种基于Br-辅助MnO2放电的混合型液流电池,具有能量密度高、可逆性高的优势。相关研究成果发表在《德国应用化学》上。 液流电池(FBs)由于安全性高、寿命长、效率高等优势,在大规模储能领域受到了广泛关注。然而目前,液流电池能量密度较低,一定程

什么是碱性锌锰电池?

  20世纪中期在锌锰电池基础上发展起来的,是锌锰电池的改进型。电池使用氢氧化钾(KOH)或氢氧化钠(NaOH)的水溶液做电解质液,采用了与锌锰电池相反的负极结构,负极在内为膏状胶体,用铜钉做集流体,正极在外,活性物质和导电材料压成环状与电池外壳连接,正、负极用专用隔膜隔开制成的电池。

大连化物所开发出高能量密度锰基混合单液流电池

  近日,我所储能技术研究部(DNL17)李先锋研究员团队提出了一种基于Br-辅助MnO2放电的混合型液流电池,具有能量密度高、可逆性高的优势。  液流电池(FBs)由于安全性高、寿命长、效率高等优势,在大规模储能领域受到了广泛关注。然而,目前液流电池能量密度较低,一定程度上限制了其进一步发展。Mn

关于碱性锌锰电池的基本介绍

  以锌为负极,二氧化锰为正极,氢氧化钾溶液为电解液的原电池。简称碱锰电池,俗称碱性电池。其产品系列都用字母“LR”表示,其后的数字表示电池的型号。  最早见诸于德国专利的碱锰电池是一种湿电池。1912年又有一种干电池取得德国专利。直到1949年才有美国悦华公司的“皇冠”型电池投入市场。1960年开

简述碱性锌锰电池的性能特征

  碱锰电池的标称电压为1.5V,最高电压为1.65V,其放电性能与普通锌锰电池相比有下列特点:  ①内阻小,能在重负荷下连续工作的同时维持较高的稳定电压;  ②MnO2利用率高,同体积相比较,其电荷量比纸板电池大一倍左右;  ③储存期内自放电率小,一般储存3年仍能保持原有电荷量的85%,寿命较长;

关于锌锰干电池的基本介绍

  锌-锰电池具有原材料来源丰富、工艺简单,价格便宜、使用方便等优点,成为人们使用最多、最广泛的电池品种。锌-锰电池以锌为负极,以二氧化锰为正极。按照基本结构,锌-锰电池可制成圆筒形、扣式和扁形,扁形电池不能单个使用,可组合叠层电池(组)。按照所用电解液的差别将锌-锰电池分为三个类型:  (1)铵型

锌-锰干电池的结构与原理

锌锰干电池是日常生活中常用的干电池。正极材料:MnO2、石墨棒负极材料:锌片电解质:NH4Cl、ZnCl2及淀粉糊状物电池符号可表示为(-)Zn|ZnCl2、NH4Cl(糊状)‖MnO2|C(石墨)(+)负极:Zn=Zn2++2e正极:2MnO2+2NH4++2e=Mn2O3+2NH3+H2O总反应

关于锌锰电池的基本信息介绍

  锌二氧化锰电池(简称锌锰电池) 又称勒兰社(Leclanche)电池,是法国科学家勒兰社(Leclanche,1839-1882)于1868年发明的由锌(Zn)作负极,炭棒为正极,电解质溶液采用二氧化锰(MnO2),中性氯化铵(NH4Cl)、氯化锌(ZnCl2)的水溶液,面淀粉或浆层纸作隔离层制

高能量密度锂硫电池研究取得进展

  人们对便携式电子设备、电动汽车和大型智能电网等需求的不断增长推动了能量存储技术的快速发展。由于硫具有高的理论比容量、丰富的自然储备、低成本和环境友好等特点,锂硫电池被认为是一类有前景的下一代能量存储系统。但是硫的导电性差、多硫化物的穿梭效应以及充放电循环中的体积膨胀等问题,仍然制约着锂硫电池的商