傅里叶变换红外光谱仪波数精度高

波数是红外定性分析的关键参数,因此仪器的波数精度非常重要。因为干涉仪的动镜可以被很精确地驱动,所以干涉图的变化很准确,同时动镜的移动距离是由He-Ne激光器的干涉条纹来测量的,从而保证了所测的光程差很准确。而现代He-Ne激光器的频率稳定度和强度稳定度都是非常高的,频率稳定度优于5*10-10,因此在计算的光谱中有很高的波数精度和准确度,通常可达到0.01cm-1。......阅读全文

傅里叶变换红外光谱仪的工作原理介绍

傅里叶变换红外光谱仪,简称为傅里叶红外光谱仪,同于色散型红外分光的原理,是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪;    主要由红外光源、光阑、干涉仪(分束器、动镜、定镜)、样品室、检测器以及各种红外反射镜、激光器、控制电路板和电源组成。可以对样品进行定性和

关于傅里叶变换红外光谱仪的分类介绍

  1、傅里叶变换红外光谱仪按光学系统分类:  光谱仪按照光学系统的不同可以分为色散型和干涉型,色散型光谱仪根据分光元件的不同,又可分为棱镜式和光栅式,干涉型红外光谱仪即傅里叶变换红外光谱仪(FTIR)。其中光栅式的优点是可以重复光谱响应,机械性能可靠,缺点是效率偏低,对偏振敏感;干涉型光谱仪的优点

傅里叶变换红外光谱仪基本原理

  傅里叶变换红外光谱仪基本原理:  傅里叶变换红外光谱仪(Fourier Transform Infrared Spectrometer,简写为FTIR Spectrometer),简称为傅里叶红外光谱仪。它不同于色散型红外分光的原理,是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪,

傅里叶变换红外光谱仪的使用及维护

傅里叶变换红外光谱(Fourier Transforminfrared spectroscopy)简写为FTIR。傅里叶红外光谱法是通过测量干涉图和对干涉图进行傅里叶变化的方法来测定红外光谱。红外光谱的强度h(δ)与形成该光的两束相干光的光程差δ之间有傅里叶变换的函数关系。傅立叶变换测定红外光谱用于

傅里叶变换红外光谱仪扫描速度快

  傅里叶变换红外光谱仪的扫描速度比色散型仪器快数百倍,而且在任何测量时间内都能获得辐射源的所有频率的全部信息,即所谓的“多路传输”。扫描速度的快慢主要由动镜的移动速度决定的,动镜移动一次即可采集所有信息。这一优点使它特别适合与气相色谱、高压液相色谱仪器联机使用,也可用于快速化学反应过程的跟踪及化学

傅里叶变换红外光谱仪的工作原理介绍

   傅里叶变换红外光谱仪,简称为傅里叶红外光谱仪,同于色散型红外分光的原理,是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪;    主要由红外光源、光阑、干涉仪(分束器、动镜、定镜)、样品室、检测器以及各种红外反射镜、激光器、控制电路板和电源组成。可以对样品进行定性和定量分 析,广

傅立叶变换红外光谱仪基本原理

  傅里叶变换红外光谱仪,简称为傅里叶红外光谱仪。其英文名称为fouriertransforminfraredspectrometer,简写为ftirspectrometer。它主要由红外光源、光阑、干涉仪(分束器、动镜、定镜)、样品室、检测器以及各种红外反射镜、激光器、控制电路板和电源组成。可以对

全球超高分辨率傅立叶变换红外光谱仪的优点有哪些?

全球超高分辨率傅立叶变换红外光谱仪具有以下优点:分辨率高:能够清晰地区分靠得很近的谱线,有助于更精确地分析物质的成分和结构;波数精度高:波数可准确到0.01cm-1,这对于红外定性分析非常关键,能提高分析的准确性;灵敏度高:由于没有狭缝装置,相同分辨率下红外光的输出通量大,可在短时间内实现多次扫描,

全球超高分辨率傅立叶变换红外光谱仪的优点有哪些?

全球超高分辨率傅立叶变换红外光谱仪具有以下优点:分辨率高:能够清晰地区分靠得很近的谱线,有助于更精确地分析物质的成分和结构;波数精度高:波数可准确到0.01cm-1,这对于红外定性分析非常关键,能提高分析的准确性;灵敏度高:由于没有狭缝装置,相同分辨率下红外光的输出通量大,可在短时间内实现多次扫描,

实验室分析仪器傅里叶变换红外光谱仪工作原理及优点

以光栅作为色散元件的红外光谱仪,由于采用了狭缝,能量受到了严格限制,尤其在远红外区能量很弱,它的扫描速率很慢,一次全扫描约需数分钟,使得一些动态研究以及与其他仪器(如色谱)的联用发生了困难,加之它的灵敏度分辨率和准确度也较低,使它在许多方面都不能完全满足需要。随着光学、电子学尤其计算机技术的发展,2

傅立叶红外光谱仪和红外分光光度计的异同点比较

傅立叶红外光谱仪和红外分光光度计的异同点比较傅立叶红外光谱仪红外分光光度计原理光相干性原理,傅立叶变换红外光谱仪与红外分光光度计的区别,主要在干涉仪和电子计算机部分,目前所用的干涉仪大多数都是迈克尔逊(MichelSon)干涉仪,它将光源来的信号以干涉图的形式送往计算机进行Fourier变换的数学处

傅立叶变换显微红外光谱仪的构成

  红外光谱仪以棱镜或光栅作为色散元件,由于采用了狭缝,使这类仪器的能量受到严格的限制,扫描时间慢,灵敏度、分辨率和准确度都较低。傅里叶变换红外光谱仪没有色散元件,主要由光源、迈克尔逊干涉仪、检测器、计算机和记录仪组成。  从红外光谱发出的红外光,经迈克尔逊干涉仪干涉调频后入射至样品,透过或反射后到

傅立叶变换显微红外光谱仪(FTIR)仪器构成

  红外光谱仪以棱镜或光栅作为色散元件,由于采用了狭缝,使这类仪器的能量受到严格的限制,扫描时间慢,灵敏度、分辨率和准确度都较低。傅里叶变换红外光谱仪没有色散元件,主要由光源、迈克尔逊干涉仪、检测器、计算机和记录仪组成。  从红外光谱发出的红外光,经迈克尔逊干涉仪干涉调频后入射至样品,透过或反射后到

快速了解红外波长跟波数

波长的倒数单位(厘米-1),就是波数。主要注意计算是用真空还是介质条件,波数还会差更大。

傅里叶变换红外光谱仪按使用场景分类

  傅里叶变换红外光谱仪根据使用场景不同可分为专业型与多用途型。专业型傅里叶变换红外光谱仪包括了大气环境傅里叶红外光谱仪、太空星载傅里叶光谱仪、化学分析傅里叶红外光谱仪、车载遥感傅里叶变换红外光谱仪等;多功能傅里叶变换光谱仪可以实现多种物质的分析,通常用于实验室对相应样品进行分析。

傅里叶变换红外光谱仪操作的注意事项

傅里叶变换红外光谱仪不同于色散型红外分光的原理,是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪, 主要由红外光源、光阑、干涉仪(分束器、动镜、定镜)、样品室、检测器以及各种红外反射镜、激光器、控制电路板和电源组成,可以对样品进行定性和定量分析,广泛应用于医药化工、地矿、石油、煤

傅里叶变换红外光谱仪仪器结构组成部分

  傅里叶变换红外光谱仪仪器应用领域:生物、制药、病理、化工、血液、细胞、基因工程等。  傅里叶变换红外光谱仪仪器结构组成部分:  (1)光源:傅里叶变换红外光谱仪为测定不同范围的光谱而设置有多个光源。通常用的是钨丝灯或碘钨灯(近红外)、硅碳棒(中红外)、高压汞灯及氧化钍灯(远红外)。  (2)分束

傅里叶变换红外光谱仪的果蔬检测分析

  傅里叶变换红外光谱仪的果蔬检测分析:果蔬中农药残留快速、高效的检测技术是当前食品安全控制关注的重大问题。用傅里叶红外光谱技术对敌百虫和辛硫磷两种农药的红外光谱进行了测量和分析,验证了FTIR/ATR技术快速检测蔬菜中有机磷农药残留的可行性,测定敌百虫的最低的检测限为0.2×10-6(体积分数),

傅里叶变换红外光谱仪操作的注意事项

傅里叶变换红外光谱仪不同于色散型红外分光的原理,是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪, 主要由红外光源、光阑、干涉仪(分束器、动镜、定镜)、样品室、检测器以及各种红外反射镜、激光器、控制电路板和电源组成,可以对样品进行定性和定量分析,广泛应用于医药化工、地矿、

如何选择适合自己的傅里叶变换红外光谱仪?

选择适合自己的傅里叶变换红外光谱仪可以考虑以下几个方面:分析需求:明确你需要分析的物质类型(有机化合物、无机材料等)、样品形态(固体、液体、气体)以及分析目的(定性分析、定量分析、结构分析等)。不同的应用可能对光谱范围、分辨率等有不同要求。光谱范围:确保光谱仪的覆盖范围满足你的分析需求。一般来说,傅

傅里叶变换红外光谱仪仪器结构组成部分

  傅里叶变换红外光谱仪仪器应用领域:生物、制药、病理、化工、血液、细胞、基因工程等。   傅里叶变换红外光谱仪仪器结构组成部分:   (1)光源:傅里叶变换红外光谱仪为测定不同范围的光谱而设置有多个光源。通常用的是钨丝灯或碘钨灯(近红外)、硅碳棒(中红外)、高压汞灯及氧化钍灯(远红外)。  

关于傅里叶变换红外光谱仪的结构组成介绍

  傅里叶变换红外(Fourier Transform Infrared,FTIR)光谱仪主要由红外光源、分束器、干涉仪、样品池、探测器、计算机数据处理系统、记录系统等组成,是干涉型红外光谱仪的典型代表,不同于色散型红外仪的工作原理,它没有单色器和狭缝,利用迈克尔逊干涉仪获得入射光的干涉图,然后通过

关于傅里叶变换红外光谱仪对谷类检测分析

  近年来,少数造假者频频在陈旧大米中涂抹掺加植物油、矿物油,增加其亮度和光泽,冒充优质新鲜大米销售,严重危害消费者身心健康。张耀武等利用红外光谱对涂有和掺有矿物油的大米进行定性鉴别。将分离出含有矿物油的试样进行红外光谱测试,未出现 1745 cm-1脂 C=O 的伸缩振动吸收和1000~1300

实验室光谱仪器傅里叶变换红外光谱仪的基本构成

①光源:光源能发射出稳定、高强度连续波长的红外光,通常使用能斯特(Nernst)灯、碳化硅或涂有稀土化合物的镍铬旋状灯丝。②干涉仪:迈克尔逊干涉仪(Michelson interferometer)的作用是将复色光变为干涉光。中红外干涉仪中的分束器主要是由溴化钾材料制成的;近红外分束器一般以石英和

实验室光谱仪器傅里叶变换红外光谱仪的工作原理

用一定频率的红外线聚焦照射被分析的试样,如果分子中某个基团的振动频率与照射红外线相同就会产生共振,这个基团就吸收一定频率的红外线,把分子吸收红外线的情况用仪器记录下来,便能得到全面反映试样成分特征的光谱,从而推测化合物的类型和结构。20世纪70年代出现的傅里叶变换红外光谱仪是一种非色散型红外吸收光谱

傅里叶变换红外光谱仪对食用油检测分析

  芝麻油中常常掺杂一些廉价的其他油品,严重损害了消费者的利益。利用中红外光谱技术,对纯芝麻油、掺入大豆油的芝麻油和掺入菜籽油的芝麻油进行分析,通过不同的预处理方法建立最优定性模型,应用最优模型进行预测,预测结果准确率达100%,准确区分了纯芝麻油和掺伪芝麻油。  油脂中反式脂肪酸含量严重影响人类健

傅里叶变换红外光谱仪对茶饮品检测分析

  在茶叶品质分析中,红外光谱分析技术越来越得到大家的青睐。有研究员利用傅里叶变换红外光谱可准确鉴别三种半发酵乌龙茶品种单枞、铁观音和奇兰。结果表明,在1800~600 cm-1间光谱的峰型和峰强存在明显的差异,据此可以对三种茶叶的种类进行鉴别。还利用傅立叶变换红外光谱法,比较分析了云南普洱碧罗春茶

傅里叶变换红外光谱仪对乳制品的监测分析

  通过红外光谱技术对乳制品定性定量分析,是实现乳制品快速检测的有效手段。利用傅立叶变换红外光谱法测定奶粉中三聚氰胺的含量,选取1551 cm-1附近特征吸收峰,建立线性定量模型。结果表明红外光谱法测定奶粉中三聚氰胺相关度高达0.9992,准确度高、稳定性好、检测限低,样品回收率为98.89%。该法

傅里叶变换红外光谱仪新技术动镜驱动方式

傅里叶变换红外光谱仪新技术 一、 动镜驱动方式迈克尔逊干涉仪是傅里叶变换红外光谱仪的核心组成部件,其由干涉仪、动镜和定镜组成。在红外数据的采集过程中,动镜必须保持直线进行往复运动,并在移动过程中同FTIR的干涉仪内部的光轴保持非常高的精度。使用机械轴承和空气轴承的直接式的动镜驱动系统可以达到这一目的

关于傅里叶变换红外光谱仪的扫描速度的介绍

  傅里叶变换红外光谱仪的扫描速度比色散型仪器快数百倍,而且在任何测量时间内都能获得辐射源的所有频率的全部信息,即所谓的“多路传输”。扫描速度的快慢主要由动镜的移动速度决定的,动镜移动一次即可采集所有信息。这一优点使它特别适合与气相色谱、高压液相色谱仪器联机使用,也可用于快速化学反应过程的跟踪及化学