全新“生物芯片”:用芯片再造一个你

想象一下,如果科学家在一块芯片上重塑了一个你,或是你的一部分,会有什么样的效果呢?至少对于医生来说,这是个不错的创新,因为它可以帮助医生识别出快速治愈你的方法,患者也不用再经历痛苦的“试错治疗”过程,而且还可以减轻目前医疗系统的负担。 生物芯片 现在加州大学伯克利分校的研究人员正在探索这一领域。他们尝试在一块小芯片上面“培育”人类器官组织,如心脏和肺。这些芯片并非我们常见的电脑芯片,而是源自成人皮肤细胞的微型网络,它会在一个极小的、类似管道的塑料内庭(plastic chamber)上培育,然后胶合到一块显微镜载片上。这项研究的目的,是为了找到一种了解人体组织存活的方法,然后模拟真实人类器官功能。我们目前的药物测试都需要利用动物,或是人类志愿者,整个过程非常冗长,如果这项技术能够成功,那么就能有更加便宜且高效的方法来进行临床治疗。 不仅如此,传统的药物研发并非针对个体,而是采用了统一标准的方法。根据该项目研究院Anur......阅读全文

生物芯片技术芯片分类

根据芯片上的固定的探针不同,生物芯片包括基因芯片、蛋白质芯片、细胞芯片、组织芯片,另外根据原理还有元件型微阵列芯。表达谱基因芯片是用于基因功能研究的一种基因芯片。是目前技术比较成熟,应用最广泛的一种基因芯片。

生物芯片技术的应用

生物芯片(biochip)是指采用光导原位合成或微量点样等方法,将大量生物大分子比如核酸片段、多肽分子甚至组织切片、细胞等等生物样品有序地固化于支持物(如玻片、硅片、聚丙烯酰胺凝胶、尼龙膜等载体)的表面,组成密集二维分子排列,然后与已标记的待测生物样品中靶分子杂交,通过特定的仪器比如激光共聚焦扫描或

生物芯片制备点样仪

  生物芯片制备点样仪是一种用于基础医学领域的医学科研仪器,于2007年4月3日启用。  技术指标  1、一次可放50块标准玻片或6块标准多孔板,3块样品板(96或384孔样品板)2、标准玻片最多可点探针40,000个,48个亚矩阵;3、点与点间距150μm,每个点直径为100-200μm,每个点样

生物芯片技术样品制备

RNA样品通常需要首先逆转录成cDNA并进行标记后才可进行检测。目前,由于检测灵敏度所限,尚难以普通探针对极少量的核酸分子进行杂交和检测,所以需要对样品或后续测试信号进行适当的放大。多数方法需要在标记和分析前对样品进行适当程度的扩增,例如通过PCR方法,以使样品核酸的拷贝数有所提高达到检测的灵敏度。

生物芯片技术检测原理

  荧光标记和检测是利用荧光标记的DNA碱基在不同的波长下吸收和发射光。在微阵列分析中,多色荧光标记可以在一个分析中同时对二个或多个生物样品进行多重分析,多重分析能大大地增加基因表达和突变检测结果的准确性,排除芯片与芯片间的人为因素。荧光为基础的分析使得利用一些先进的数据获得技术成为可能,包括共聚焦

生物芯片技术的起源

生物芯片技术起源于核酸分子杂交。所谓生物芯片一般指高密度固定在互相支持介质上的生物信息分子(如基因片段、DNA片段或多肽、蛋白质、糖分子、组织等)的微阵列杂交型芯片(micro-arrays),阵列中每个分子的序列及位置都是已知的,并且是预先设定好的序列点阵。微流控芯片(microfluidic c

生物芯片技术扫描工具

一旦荧光标记样品和微阵列反应后,未结合的成分就可洗去,结合到芯片的样品可通过荧光检测装置进行检测。聚焦扫描仪和CCD相机均已成功地应用于芯片的检测。聚焦扫描主要是利用玻璃基质小区域(约100um2)的激光发晒透镜(或两者)使整个影像聚集,每个位点上带荧光的样品发射的光通过一系列的反光镜,光片和晶体后

介绍生物芯片点样仪

生物芯片点样仪  型号:SM100  SM100功能生物芯片点样仪采用非接触式压电振荡技术开发,通过压电元件将电脉冲转换为压电元件的位移改变,从而使毛细管点样针喷出微小液滴,可用于nL级的液体微量点样,且毛细管点样针可单独更换,确保为不同应用领域的客户提供解决方案。    技术指标 喷头  点样方式

生物芯片入门(五):应用

基因芯片技术及其研究现状和应用前景生物芯片技术是随着“人类基因组计划”(human genome project,HGP)的进展而发展起来的,它是90年代中期以来影响最深远的重大科技进展之一,它融微电子学、生物学、物理学、化学、计算机科学为一体的高度交叉的新技术,具有重大的基础研究价值,又具

生物芯片有哪些分类

全球首个生物芯片产品问世虽然已有20多年的时间,但生物芯片分类方式仍没有完全统一的标准。比较常见的分类方式有3种,分别是按用途、作用方式和成分来分类。(1)用途分类生物电子芯片:用于生物计算机等生物电子产品的制造。生物分析芯片:用于各种生物大分子、细胞、组织的操作以及生物化学反应的检测。生物电子芯片

生物芯片的制备方法

载体材料及要求作为载体必须是固体片状或者膜、表面带有活性基因,以便于连接并有效固定各种生物分子。目前制备芯片的固相材料有玻片、硅片、金属片、尼龙膜等。目前较为常用的支持材料是玻片,因为玻片适合多种合成方法,而且在制备芯片前对玻片的预处理也相对简单易行。载体种类玻璃片、PVDF膜、聚丙烯酰氨凝胶、聚苯

生物芯片用于基因诊断

从正常人的基因组中分离出DNA与DNA芯片杂交就可以得出标准图谱。从病人的基因组中分离出DNA与DNA芯片杂交就可以得出病变图谱。通过比较、分析这两种图谱,就可以得出病变的DNA信息。这种基因芯片诊断技术以其快速、高效、敏感、经济、平行化、自动化等特点,将成为一项现代化诊断新技术。例如Affymet

生物芯片与基因发现

    最新一期《Science》发表K.K.Jain的文章Biochips for Gene Spotting,全文如下:发表生物芯片是目前生物技术中主要的技术之一。研究人员从计算机技术中借用了微型化、整合、平行化处理的技术来发展在芯片上的实验室装置和处理过程。一般地,在芯片上的靶标是有序排列

生物芯片技术的起源

生物芯片技术起源于核酸分子杂交。所谓生物芯片一般指高密度固定在互相支持介质上的生物信息分子(如基因片段、DNA片段或多肽、蛋白质、糖分子、组织等)的微阵列杂交型芯片(micro-arrays),阵列中每个分子的序列及位置都是已知的,并且是预先设定好的序列点阵。微流控芯片(microfluidic c

生物芯片的技术核心

所有的生物芯片技术都包含四个基本要点:芯片的制作、杂交或反应、测定或扫描、数据处理。生物芯片的技术核心是芯片的制备及反应信号的检测。 1、芯片制备技术 目前制备芯片的方法基本上可分为两大类:一类是原位合成(in situ Synthesis);一类是合成后交联(post-synthesis at

生物芯片应用领域

最大用途在于疾病检测基因表达水平的检测 用基因芯片进行的表达水平检测可自动、快速地检测出成千上万个基因的表达情况。谢纳(M.Schena) 等用人外周血淋巴细胞的cDNA文库构建一个代表1046个基因的cDNA微阵列,来检测体外培养的T细胞对热休克反应后不同基因表达的差异,发现有5个基因在处理后存在

生物芯片技术检测原理

荧光标记和检测是利用荧光标记的DNA碱基在不同的波长下吸收和发射光。在微阵列分析中,多色荧光标记可以在一个分析中同时对二个或多个生物样品进行多重分析,多重分析能大大地增加基因表达和突变检测结果的准确性,排除芯片与芯片间的人为因素。荧光为基础的分析使得利用一些先进的数据获得技术成为可能,包括共聚焦扫描

生物芯片的制备方法

载体材料及要求作为载体必须是固体片状或者膜、表面带有活性基因,以便于连接并有效固定各种生物分子。目前制备芯片的固相材料有玻片、硅片、金属片、尼龙膜等。目前较为常用的支持材料是玻片,因为玻片适合多种合成方法,而且在制备芯片前对玻片的预处理也相对简单易行。载体种类玻璃片、PVDF膜、聚丙烯酰氨凝胶、聚苯

生物芯片技术的定义

  生物芯片(biochip)是指采用光导原位合成或微量点样等方法,将大量生物大分子比如核酸片段、多肽分子甚至组织切片、细胞等等生物样品有序地固化于支持物的表面,组成密集二维分子排列,然后与已标记的待测生物样品中靶分子杂交,通过特定的仪器对杂交信号的强度进行快速、并行、高效地检测分析,从而判断样品中

生物芯片技术点样法

点样法在多聚物的设计方面与原位合成技术相似。只是合成工作用传统的DNA、多肽合成仪或PCR扩增或体内克隆等方法完成。大量制备好的核酸探针、多肽、蛋白等生物大分子再用特殊的自动化微量点样装置将其以较高密度互不干扰地印点于经过特殊处理的玻片、尼龙膜、硝酸纤维素膜上,并使其与支持物牢固结合。支持物需预先经

生物芯片用于药物筛选

利用基因芯片分析用药前后机体的不同组织、器官基因表达的差异。如果再cDNA表达文库得到的肽库制作肽芯片,则可以从众多的药物成分中筛选到起作用的部分物质。还有,利用RNA、单链DNA有很大的柔性,能形成复杂的空间结构,更有利与靶分子相结合,可将核酸库中的RNA或单链DNA固定在芯片上,然后与靶蛋白孵育

生物芯片的点样法

  点样法在多聚物的设计方面与原位合成技术相似。只是合成工作用传统的DNA、多肽合成仪或PCR扩增或体内克隆等方法完成。大量制备好的核酸探针、多肽、蛋白等生物大分子再用特殊的自动化微量点样装置将其以较高密度互不干扰地印点于经过特殊处理的玻片、尼龙膜、硝酸纤维素膜上,并使其与支持物牢固结合。支持物需预

生物芯片的检测原理

  杂交信号的检测是DNA芯片技术中的重要组成部分。以往的研究中已形成许多种探测分子杂交的方法,如荧光显微镜、隐逝波传感器、光散射表面共振、电化传感器、 化学发光、荧光各向异性等等,但并非每种方法都适用于DNA芯片。由于DNA芯片本身的结构及性质,需要确定杂交信号在芯片上的位置,尤其是大规模DNA芯

简述生物芯片点样仪

SM100功能生物芯片点样仪采用非接触式压电振荡技术开发,通过压电元件将电脉冲转换为压电元件的位移改变,从而使毛细管点样针喷出微小液滴,可用于nL级的液体微量点样,且毛细管点样针可单独更换,确保为不同应用领域的客户提供解决方案。    技术指标 喷头  点样方式:非接触式 驱动方式:压电振荡 点样体

生物芯片按用途分类

(1)生物电子芯片:用于生物计算机等生物电子产品的制造。(2)生物分析芯片:用于各种生物大分子、细胞、组织的操作以及生物化学反应的检测。前一类目前在技术和应用上很不成熟,一般情况下所指的生物芯片主要为生物分析芯片。

生物芯片应用领域

  1、基因表达水平的检测  用基因芯片进行的表达水平检测可自动、快速地检测出成千上万个基因的表达情况。Schena等采用拟南芥基因组内共45个基因的cDNA微阵列(其中14个为完全序列,31个为EST),检测该植物的根、叶组织内这些基因的表达水平,用不同颜色的荧光素标记逆转录产物后分别与该微阵列杂

生物芯片的制备过程

载体材料及要求作为载体必须是固体片状或者膜、表面带有活性基因,以便于连接并有效固定各种生物分子。目前制备芯片的固相材料有玻片、硅片、金属片、尼龙膜等。目前较为常用的支持材料是玻片,因为玻片适合多种合成方法,而且在制备芯片前对玻片的预处理也相对简单易行。载体种类玻璃片、PVDF膜、聚丙烯酰氨凝胶、聚苯

生物芯片的发展历史

  俄罗斯科学院 恩格尔哈得分子生物学研究所和美国阿贡国家实验室(ANL)的科学家们最早在文献中提出了用杂交法测定核酸序列(SBH)新技术的想法。当时用的是多聚寡核酸探针。几乎与此同时 英国牛津大学生化系的Sourthern等也取得了在载体固定寡核苷酸及杂交法测序的国际ZL。在这些技术储备的基础上,

生物芯片的技术特点

高通量提高实验进程,利于显示图谱的快速对照和阅读微型化减少试剂用量和反应液体积,提高样品浓度和反应速度自动化减低成本和保证质量

生物芯片的世界发展

进入21世纪,随着生物技术的迅速发展,电子技术和生物技术相结合诞生了半导体芯片的兄弟——生物芯片,这将给我们的生活带来一场深刻的革命。这场革命对于全世界的可持续发展都会起到不可估量的贡献。Fred Sanger生物芯片技术的发展最初得益于埃德温·迈勒·萨瑟恩(Edwin Mellor Souther