合成孔径雷达的算法

这里给出的合成孔径雷达算法通常适用于相控阵。 定义了一个场景元素的三维数组(体积),它将代表目标存在的空间体积。阵列的每个元素都是立方体素,表示反射表面在空间中该位置的概率(“密度”)。(注意二维SAR也是可能的,只显示了目标区域的自上而下的视图。) 最初,合成孔径雷达算法将零密度赋予每个体素。 然后,对于每个捕获的波形,迭代整个体积。对于给定的波形和体素,计算从该体素表示的位置到用于捕获该波形的天线的距离。该距离代表波形的时间延迟。然后,波形中该位置的样本值被添加到体素的密度值中。这表示该位置目标的可能回波。此处需要注意的是,根据波形时序的精度等因素,这里有几种可选方法。例如,如果相位不能精确确定,则只有波形样本的包络幅度(借助希尔伯特变换)可以添加到体素中。如果波形极化和相位是已知的并且足够精确,那么这些值可以被添加到一个更复杂的体素中,该体素单独保存这些测量值。 在所有波形在所有体素上迭代之后,基本合成孔径雷达......阅读全文

合成孔径雷达的算法

  这里给出的合成孔径雷达算法通常适用于相控阵。  定义了一个场景元素的三维数组(体积),它将代表目标存在的空间体积。阵列的每个元素都是立方体素,表示反射表面在空间中该位置的概率(“密度”)。(注意二维SAR也是可能的,只显示了目标区域的自上而下的视图。)  最初,合成孔径雷达算法将零密度赋予每个体

合成孔径雷达

  合成孔径雷达雷达(SAR)是雷达的一种类型,用于创建物体的二维或三维图像的重建,例如风景地貌。[1] 合成孔径雷达利用雷达天线在目标区域的运动来提供比传统波束扫描雷达更好的空间分辨率。合成孔径雷达通常安装在如飞机或航天器的移动平台上,起源于一种先进的侧视机载雷达(SLAR)。合成孔径雷达装置在雷

合成孔径雷达的历史

  卡尔·威利,[44] 1951年6月,一位数学家在为阿特拉斯洲际弹道导弹计划研究相关制导系统时,发明了合成孔径雷达。[45] 1952年初,威利与弗雷德·海斯利和比尔·韦尔蒂一起,构建了一个被称为“多普勒无参数搜索雷达”的概念验证系统。在20世纪50年代和60年代,Goodyear(后来的Goo

合成孔径雷达简介

  合成孔径雷达(Synthetic Aperture Radar,简称SAR)是一种全天候、全天时的现代高分辨率微波成像雷达。它是二十世纪高新科技的产物,是利用合成孔径原理、脉冲压缩技术和信号处理方法,以真实的小孔径天线获得距离向和方位向双向高分辨率遥感成像的雷达系统,在成像雷达中占有绝对重要的地

干涉合成孔径雷达的应用

  构造  InSAR可应用于构造形变,例如地震造成的地表位移。首次应用实在1992年 Landers地震,很快便在全球各种地震中普遍使用,特别是对1999年土耳其伊兹密特和2003年伊朗Bam地震进行了深入研究。InSAR也可用于监测断层。  火山监测  InSAR被用于各种火山监测,包括爆发造成

合成孔径雷达的数据分布

  Alaska Satellite Facility为科学界提供来自当前和过去任务的合成孔径雷达数据产品和工具的生产、存档和分发,包括2013年6月发布的具有35年历史的Seasat SAR图像。  CSTARS下载和处理来自各种卫星的合成孔径雷达数据(以及其他数据),并有迈阿密大学罗森斯蒂尔海洋

合成孔径雷达的图像外观

  以下考虑因素也适用于实际孔径地形成像雷达,但当距离分辨率与仅可从合成孔径雷达获得的交叉波束分辨率相匹配时,这些因素则显得更为重要。  雷达图像的二维是距离和交叉距离。有限地形的雷达图像类似于倾斜的照片,但不是从雷达位置拍摄的。这是因为雷达图像中的距离坐标垂直于倾斜照片的垂直角度坐标。因此,观看这

合成孔径雷达的典型应用

  在典型的合成孔径雷达应用中,单个雷达天线装载于飞机或航天器上,以辐射具有垂直于飞行路径方向的基本波束分量。波束在垂直方向上很宽,这样它将从飞机下方向地平线照射。  图像范围维度的分辨率是通过定义非常短时间间隔的脉冲来实现的,或者通过发射由载波频率和必要边带组成的短脉冲,全部在一定带宽内,或者通过

合成孔径雷达的研究热点

合成孔径雷达 (Synthetic Aperture Radar),是利用合成孔径原理,实现高分辨的微波成像,具备全天时、全天候、高分辨、大幅宽等多种特点,最初主要是机载、星载平台,随着技术的发展,出现了弹载、地基SAR、无人机SAR、临近空间平台SAR、手持式设备等多种形式平台搭载的

合成孔径雷达的数据收集

  飞越有关地形的飞机可以收集高度准确的数据。20世纪80年代,作为NASA航天飞机上飞行仪器的原型,NASA在其康维尔990上运行合成孔径雷达。 1986年,这架飞机起飞时着火了。1988年,美国国家航空航天局重建了一个C、L和P波段合成孔径雷达,搭载于NASA的DC-8飞机。它被称为AIRSAR

干涉合成孔径雷达的简介

  这种测量方法使用两幅或多幅合成孔径雷达影像图,根据卫星或飞机接收到的回波的相位差来生成数字高程模型或者地表形变图。理论上此技术可以测量数日或数年间厘米级的地表形变,可以用于自然灾害监测,例如地震、火山和滑坡,以及结构工程尤其是沉降监测和结构稳定性。

合成孔径雷达原理(四)

By assuming that the Doppler frequency shift is constant only until the quadratic term adds a value of  / 4 to , then the window for observing the wav

合成孔径雷达原理(五)

Lay OverThe direction of relief displacement is different for optical and radar systems. A camera sees the relief displaced away from the nadir po

合成孔径雷达原理(一)

Theory of Synthetic Aperture Radar合成孔径雷达原理Electromagnetic TheoryUnlike optical and infrared imaging sensors which are inherently passive, meaning

合成孔径雷达原理(二)

Range ResolutionRange is the direction perpendicular to flight path of the aircraft. The vertical beamwidth , shown in Figure 3, is determined by the

合成孔径雷达发展历程

  合成孔径的概念始于50年代初期。当时,美国有些科学家想突破经典分辨力的限制,提出了一些新的设想:利用目标与雷达的相对运动所产生的多普勒频移现象来提高分辨力;用线阵天线概念证明运动着的小天线可获得高分辨力。50年代末,美国研制成第一批可供军事侦察用的机载高分辨力合成孔径雷达。60年代中期,随着遥感

注水算法

迭代注水算法是由Wei Yu提出的,它是一种多用户功率分配算法。这是一种自私算法,当接收端和发送端没有共享信道信息时,它的实现非常简单,复杂度低。但是,当信道上有共享信 息,需要共享信道,这是网络拓扑就会出现远近效应,这就产生了非平衡状态,引起用户间信号干扰,信息传输效率下降。       迭代注水

合成孔径雷达的动机和应用

  合成孔径雷达能够独立于飞行高度和天气进行高分辨率遥感探测,因为合成孔径雷达可以通过改变频率以避免天气引起的信号衰减。合成孔径雷达具有昼夜成像能力,因为合成孔径雷达可以在夜间提供电磁照明。[3][4][5]  合成孔径雷达图像在地球和其他行星表面的遥感和测绘中有着广泛的应用。合成孔径雷达的应用包括

合成孔径雷达与相控阵的关系

  一种与合成孔径雷达密切相关的技术是使用实际天线阵列(称为“相控阵列”),这些天线元件在垂直于雷达距离维度的一个或两个维度上进行空间排布。这些物理阵列是真正的合成阵列,实际上是由一组辅助物理天线合成的。它们的操作不需要涉及相对于目标的运动。这些阵列的所有元件同时实时接收,通过它们的信号可以分别受到

双向扫描算法和电梯调度算法区别

双向扫描算法和电梯调度算法区别:1、双向扫描(SCAN)算法不仅考虑到欲访问的磁道与当前磁道间的距离,更优先考虑的是磁头,当前的移动方向。例如,当磁头正在自里向外移动时,SCAN算法所考虑的下一个访问对象应足其欲访问的磁道既在当前磁道之外,又是距离最近的。这样自里向外地访问直至再无更外的磁道需要访问

基质效应的算法

化学分析中,基质指的是样品中被分析物以外的组分。基质常常对分析物的分析过程有显著的干扰,并影响分析结果的准确性。例如,溶液的离子强度会对分析物活度系数有影响,这些影响和干扰被称为基质效应(matrix effect)。去除方法  目前最常用的去除基质效应的方法是,通过已知分析物浓度的标准样品,同时尽

合成孔径雷达的基本原理

  合成孔径雷达是安装在移动平台上的成像雷达。[7] 依次传输和接收电磁波信号,系统电子设备可以将数据数字化并存储起来,以备后续处理。由于发送和接收发生在不同的时间,它们映射到不同的位置。接收信号的有序组合建立了比物理天线宽度长得多的虚拟孔径。这就是术语“合成孔径”的来源,赋予它成像雷达的特性。[5

合成孔径雷达成像原理的介绍

  合成孔径雷达是一种具有高分辨率的成像雷达,是雷达的一个重要发展方向。  本书可作为高等学校雷达专业的研究生教学用书,也可供雷达技术领域的工程技术人员和科研人员阅读参考。  可分为两大部分:第一部分为第二章至第五章,包括雷达成像处理必要的关键技术:脉冲压缩、成像处理算法以及多普勒参数估计,其中还包

遗传算法-的特点

(1)算法从问题解的串集开始搜索,而不是从单个解开始。这是遗传算法与传统优化算法的极大区别。传统优化算法是从单个初始值迭代求最优解的;容易误入局部最优解。遗传算法从串集开始搜索,覆盖面大,利于全局择优。(2)遗传算法同时处理群体中的多个个体,即对搜索空间中的多个解进行评估,减少了陷入局部最优解的风险

干涉合成孔径雷达的永久散射体

  永久或固定不变的散射体技术相对传统InSAR来说是最近开发的,它基于对一些列干涉图中保持相干性像素的研究。1999年,意大利米兰理工大学的研究人员开发了一种新的多图象处理方式,这就是在一摞图像中寻找地面上提供了稳定持久雷达反射的物体。这些物体可以是像素般大,通畅是子像素大,出现于每一幅图像中。 

缺陷检测算法

基本两个步骤:1、缺陷检出,算法较多,本人认为是不变矩阵法和主成分分析法;2、缺陷识别和分类,多数使用BP神经网络进行训练,提高识别率。

AFM海森斑点的算法

King和同事采用一种名为海森斑点的算法解决这个问题。海森斑点算法将尺度空间框架与局部图像曲率值相结合,能够在亚像素精度上正式定义粒子中心和边界。最终产生的粒子边界与用户定义参数相互独立,也不需要对图像进行预处理。他们对不同算法进行了直接比较,发现海森斑点算法能够比传统原子力粒子检测技术更精确地对生

常见的哈希算法有哪些

1.linear hash 线性2.quadratic hash 每次以1,4,9,16这样的幅度向下找3.double hash 用两个函数一起决定HASH的index

商用密码算法的“中国远征”

  起码需要5、6年时间。”一位来自德国的“老标准”给中国密码标准的国际“起步”估了个“时间戳”。那是2015年初,国家密码管理局计划启动SM系列算法的ISO(国际标准化组织)国际标准推进工作。在没有太多经验情况下,希望找到多年从事密码标准工作的国际友人,想摸个底,可前景却不太乐观。  “在ISO这