紫外吸收光谱的基本原理是什么
紫外吸收光谱、可见吸收光谱都属于分子光谱,它们都是由于价电子的跃迁而产生的。利用物质的分子或离子对紫外和可见光的吸收所产生的紫外可见光谱及吸收程度可以对物质的组成、含量和结构进行分析、测定、推断。......阅读全文
紫外吸收光谱的基本原理是什么
紫外吸收光谱、可见吸收光谱都属于分子光谱,它们都是由于价电子的跃迁而产生的。利用物质的分子或离子对紫外和可见光的吸收所产生的紫外可见光谱及吸收程度可以对物质的组成、含量和结构进行分析、测定、推断。
紫外吸收光谱的基本原理是什么
紫外吸收光谱、可见吸收光谱都属于分子光谱,它们都是由于价电子的跃迁而产生的。利用物质的分子或离子对紫外和可见光的吸收所产生的紫外可见光谱及吸收程度可以对物质的组成、含量和结构进行分析、测定、推断。
紫外吸收光谱的基本原理
紫外吸收光谱、可见吸收光谱都属于分子光谱,它们都是由于价电子的跃迁而产生的。利用物质的分子或离子对紫外和可见光的吸收所产生的紫外可见光谱及吸收程度可以对物质的组成、含量和结构进行分析、测定、推断。
紫外吸收光谱的基本原理
利用物质的分子或离子对紫外和可见光的吸收所产生的紫外可见光谱及吸收程度可以对物质的组成、含量和结构进行分析、测定、推断。不同官能团,吸收的波长不一样.
紫外可见吸收光谱基本原理
1. 紫外可见吸收光谱产生的原理紫外可见吸收光谱是由于分子(或离子)吸收紫外或者可见光(通常200-800 nm)后发生价电子的跃迁所引起的。由于电子间能级跃迁的同时总是伴随着振动和转动能级间的跃迁,因此紫外可见光谱呈现宽谱带。紫外可见吸收光谱的横坐标为波长(nm),纵坐标为吸光度。紫外可见吸收光谱
紫外吸收光谱原理是什么
紫外吸收光谱和可见吸收光谱都属于分子光谱,它们都是由于价电子的跃迁而产生的。利用物质的分子或离子对紫外和可见光的吸收所产生的紫外可见光谱及吸收程度可以对物质的组成、含量和结构进行分析、测定、推断。 紫外可见吸收光谱应用广泛,不仅可进行定量分析,还可利用吸收峰的特性进行定性分析和简单的结构分析,
简述紫外可见吸收光谱的基本原理
紫外可见吸收光谱的基本原理是利用在光的照射下待测样品内 部的电子跃迁,电子跃迁类型有: (1)σ→σ* 跃迁 指处于成键轨道上的 σ 电子吸收光子后被激发跃迁到 σ* 反键轨道 (2)n→σ* 跃迁 指分子中处于非键轨道上的 n 电子吸收能量后向 σ*反键轨 道的跃迁 (3)π→π* 跃迁
紫外可见吸收光谱法的基本原理
紫外可见吸收光谱的基本原理是利用在光的照射下待测样品内部的电子跃迁,电子跃迁类型有:(1)σ→σ* 跃迁 指处于成键轨道上的σ电子吸收光子后被激发跃迁到σ*反键轨道(2)n→σ* 跃迁 指分子中处于非键轨道上的n电子吸收能量后向σ*反键轨道的跃迁(3)π→π* 跃迁 指不饱和键中的π电子吸收光波能量
紫外可见吸收光谱法的基本原理
紫外可见吸收光谱的基本原理是利用在光的照射下待测样品内部的电子跃迁,电子跃迁类型有:(1)σ→σ* 跃迁 指处于成键轨道上的σ电子吸收光子后被激发跃迁到σ*反键轨道(2)n→σ* 跃迁 指分子中处于非键轨道上的n电子吸收能量后向σ*反键轨道的跃迁(3)π→π* 跃迁 指不饱和键中的π电子吸收光波能量
紫外可见吸收光谱法的基本原理
紫外可见吸收光谱的基本原理是利用在光的照射下待测样品内部的电子跃迁,电子跃迁类型有:(1)σ→σ* 跃迁 指处于成键轨道上的σ电子吸收光子后被激发跃迁到σ*反键轨道(2)n→σ* 跃迁 指分子中处于非键轨道上的n电子吸收能量后向σ*反键轨道的跃迁(3)π→π* 跃迁 指不饱和键中的π电子吸收光波能量
红外吸收光谱的基本原理是什么?
分子运动有平动,转动,振动和电子运动四种,其中后三种为量子运动。分子从较低的能级E1,吸收一个能量为hv的光子,可以跃迁到较高的能级E2,整个运动过程满足能量守恒定律E2-E1=hv。能级之间相差越小,分子所吸收的光的频率越低,波长越长。红外吸收光谱是由分子振动和转动跃迁所引起的, 组成化学键或
紫外吸收光谱的定量计算公式是什么
A=ECL C=A/ELA为吸收度;T为透光率;E为吸收系数,采用的表示方法是(E1%1cm),其物理意义为当溶液浓度为1%(g/ml),液层厚度为1cm时的吸收度数值;C为100ml溶液中所含被测物质的重量(按干燥品或无水物计算),g;L为液层厚度,cm。紫外-可见分光光度法是在190~800nm
紫外可见吸收光谱的紫外光谱
各种因素对吸收谱带的影响表现为谱带位移、谱带强度的变化、谱带精细结构的出现或消失等。谱带位移包括蓝移(或紫移,hypsochromic shift or blue shift))和红移(bathochromic shift or red shift)。蓝移(或紫移)指吸收峰向短波长移动,红移指吸收峰
紫外吸收光谱的产生
紫外吸收光谱的产生同核双原子分子的分子轨道能级图吸光物质分子吸收特定能量(波长)的电磁波(紫外光)产生分子的电子能级跃迁。
紫外吸收光谱的原理
紫外吸收光谱和可见吸收光谱都属于分子光谱,它们都是由于价电子的跃迁而产生的。利用物质的分子或离子对紫外和可见光的吸收所产生的紫外可见光谱及吸收程度可以对物质的组成、含量和结构进行分析、测定、推断。 在有机化合物分子中有形成单键的σ电子、有形成双键的π电子、有未成键的孤对n电子。当分子吸收一定能
紫外吸收光谱的原理
紫外吸收光谱的原理是光在与物质作用时,物质可对光产生不同程度的吸收。我们利用测量物质对某些波长的光的吸收来了解物质的特性,这就是吸收光谱法的基础。物质的结构决定了物质在吸收光时只能吸收某些特定波长的吸收,也就是说,物质对光的吸收是具有选择性的。通过测量物质对不同波长的吸收程度(吸光度),以波长为横坐
分子的紫外可见吸收光谱呈带状光谱,其原因是什么
带状光谱是由滤光片带来的,一般玻璃滤光片半宽度为60nm,夹胶滤光片为30-40nm,最好的干涉滤光片也为10nm。所以呈带状光谱。
紫外可见吸收光谱的性质
1. 同一浓度的待测溶液对不同波长的光有不同的吸光度;2. 对于同一待测溶液,浓度愈大,吸光度也愈大;3. 对于同一物质,不论浓度大小如何,很大吸收峰所对应的波长(很大吸收波长 λmax) 相同,并且曲线的形状也完全相同。
紫外吸收光谱产生的原因
分子具有不同的特征能级,当分子从外界吸收能量后,就会发生相应的能级跃迁,产生吸收光谱。物质分子吸收一定波长的紫外光时,分子内电子发生跃迁,所产生的吸收光谱即为紫外吸收光谱。
影响紫外吸收光谱的因素
影响紫外吸收光谱的主要因素有位阻影响,跨环反应,溶剂效应,体系pH值影响。
紫外—可见吸收光谱的产生
4.1.1.1 分子光谱和电子光谱紫外—可见分光光度法是利用某些物质的分子对波长范围在200~800nm的电磁波的吸收作用来进行分析测定的一种方法。分子的紫外—可见吸收光谱是由价电子能级的跃迁而产生的。分子,甚至是最简单的双原子分子的光谱,也要比原子光谱复杂得多。这是由于在分子中,除了电子相对于原子
紫外吸收光谱的产生原理
吸光物质分子吸收特定能量(波长)的电磁波(紫外光)产生分子的电子能级跃迁。电子跃迁类型1. 分子轨道有机分子中常见的分子轨道:σ轨道、π轨道和非键轨道 (未共用电子对n)分子轨道图如图22. 电子跃迁(transition)类型(1)σ~σ*跃迁:能级跃迁图由饱和键产生,能级差大,吸收光波波长短,吸
紫外可见吸收光谱的特征
1. 吸收峰的形状及所在位置——定性、定结构的依据2. 吸收峰的强度——定量的依据A = lg(1/T)=κCLT:透射率k:摩尔吸收系数,单位:L·cm⁻¹·mol⁻¹C:浓度L:光程长紫外可见光谱的两个重要特征波峰:λmax, κ例:λmaxEt = 279 nm (κ=5012,logk=3.
紫外—可见吸收光谱的产生
4.1.1.1 分子光谱和电子光谱紫外—可见分光光度法是利用某些物质的分子对波长范围在200~800nm的电磁波的吸收作用来进行分析测定的一种方法。分子的紫外—可见吸收光谱是由价电子能级的跃迁而产生的。分子,甚至是最简单的双原子分子的光谱,也要比原子光谱复杂得多。这是由于在分子中,除了电子相对于原子
原子吸收光谱的基本原理
原子吸收光谱线并不是严格地几何意义上的线(几何线无宽度),而是有相当窄的频率或波长范围,即有一定的宽度。一束不同频率强度为I0的平行光通过厚度为l的原子蒸气,一部分光被吸收,透过光的强度Iv服从吸收定律Iv=I0·exp(-kvl)式中kv是基态原子对频率为v的光的吸收系数。不同元素原子吸收不同频率
原子吸收光谱的基本原理
原子吸收光谱的产生 众所周知,任何元素的原子都是由原子核和绕核运动的电子组成,原子核外电子按其能量的高低分层分布而形成不同的能级,因此,一个原子核可以具有多种能级状态。能量最低的能级状态称为基态能级(E0=0),其余能级称为激发态能级,而能最低的激发态则称为第一激发态。正常情况下,原子处于基态,
原子吸收光谱的基本原理
众所周知,任何元素的原子都是由原子核和绕核运动的电子组成,原子核外电子按其能量的高低分层分布而形成不同的能级,因此,一个原子核可以具有多种能级状态。能量最低的能级状态称为基态能级(E0=0),其余能级称为激发态能级,而能最低的激发态则称为第一激发态。正常情况下,原子处于基态,核外电子在各自能量最低的
原子吸收光谱的基本原理
原子吸收光谱(Atomic Absorption Spectroscopy,AAS),即原子吸收光谱法,是基于气态的基态原子外层电子对紫外光和可见光范围的相对应原子共振辐射线的吸收强度来定量被测元素含量为基础的分析方法,是一种测量特定气态原子对光辐射的吸收的方法。原子吸收光谱是20世纪50年代中
原子吸收光谱的基本原理
原子吸收光谱的基本原理:原子吸收是指呈气态的原子对由同类原子辐射出的特征谱线所具有的吸收现象。原子吸收光谱仪的原理如下:仪器从光源辐射出具有待测元素特征谱线的光,通过试样蒸气时被蒸气中待测元素基态原子所吸收,由辐射特征谱线光被减弱的程度来测定试样中待测元素的含量。方法原理如下:原子吸收是指呈气态的原
原子吸收光谱的基本原理
原子吸收光谱线并不是严格地几何意义上的线(几何线无宽度),而是有相当窄的频率或波长范围,即有一定的宽度。一束不同频率强度为I0的平行光通过厚度为l的原子蒸气,一部分光被吸收,透过光的强度Iv服从吸收定律Iv=I0·exp(-kvl)式中kv是基态原子对频率为v的光的吸收系数。不同元素原子吸收不同频率