smFRET检测GPCR调控下游蛋白arrestin的构象分布研究获进展

G蛋白偶联受体(GPCR)是目前已知的人类基因组中最大的膜蛋白家族,约30%的临床处方药的直接靶点是GPCR,负责80%左右的跨膜信号转导,参与调控人体中多数病理与生理过程。GPCR主要通过G蛋白及arrestin将细胞外的刺激转变为细胞内信号。近年来,结构生物学研究方法的进步为研究GPCR及其下游蛋白arrestin和G蛋白的功能奠定了良好的基础。目前,研究GPCR及下游蛋白结构的常用方法主要有晶体学、NMR、冷冻电镜。然而,通过晶体或电镜结构获得的信息,对于GPCR结构和功能的理解往往只能从静态水平出发,较难捕获GPCR构象动态转换的动力学过程以及与下游蛋白相互作用时的瞬时调节过程。NMR 光谱可捕获GPCR及其下游蛋白的动态过程,却不能检测其构象状态分布。 前期工作中,山东大学教授孙金鹏与中国科学院生物物理研究所教授王江云研究团队,针对受体与arrestin相互作用的磷酸化编码机制展开了研究工作,发现了GPCR磷酸化......阅读全文

小G蛋白的共同特点

小G蛋白的共同特点是,当结合了GTP时即成为活化形式,这时可作用于下游分子使之活化,而当GTP水解成为GDP时(自身为GTP酶)则恢复到非活化状态。这一点与Gα类似,但是小G蛋白的分子量明显低于Gα。在细胞中存在着一些专门控制小G蛋白活性的小G蛋白调节因子,有的可以增强小G蛋白的活性,如鸟苷酸交换因

什么是G-蛋白偶联受体?

中文名称G 蛋白偶联受体英文名称G-protein coupled receptor定  义一种与三聚体G蛋白偶联的细胞表面受体。含有7个穿膜区,是迄今发现的最大的受体超家族,其成员有1000多个。与配体结合后通过激活所偶联的G蛋白,启动不同的信号转导通路并导致各种生物效应。应用学科生物化学与分子生

G蛋白耦联型受体简介

  G蛋白耦联型受体是指受体和酶或离子通道之间的相互作用通过一种结合GTP的调节蛋白介导完成的。配体与受体结合后通过G蛋白间接作用于酶或离子通道,从而调节细胞的生理活动。  G蛋白耦联型受体为7次跨膜蛋白,因此亦有人将此类受体称为七次跨膜受体。受体本身不具备通道结构,也无酶活性,它是通过与脂质双层中

小G蛋白的功能定义

小G蛋白(Small G Protein)因分子量只有20~30KD而得名,同样具有GTP酶活性,在多种细胞反应中具有开关作用。第一个被发现的小G蛋白是Ras,它是ras基因的产物。其它的还有Rho、SEC4、YPT1等,微管蛋白β亚基也是一种小G蛋白。

G蛋白偶联的结构特点

与G蛋白偶联的多种受体具有共同的结构功能特点:分子量40-50kDa左右,由350-500氨基酸组组成,形成7个由疏水氨基酸组成的α螺旋区段,反复7次穿越细胞膜的脂质双层。肽链的N末端在胞膜外,C末端在细胞内。N末端上常有许多糖基修饰。

G蛋白偶联受体结构介绍

G蛋白偶联受体均是膜内在蛋白(Integral membrane protein),每个受体内包含七个α螺旋组成的跨膜结构域,这些结构域将受体分割为膜外N端(N-terminus),膜内C端(C-terminus),3个膜外环(Loop)和3个膜内环。受体的膜外部分经常带有糖基化修饰。膜外环上包含有

G-蛋白偶联受体的定义

中文名称G 蛋白偶联受体英文名称G-protein coupled receptor定  义一种与三聚体G蛋白偶联的细胞表面受体。含有7个穿膜区,是迄今发现的最大的受体超家族,其成员有1000多个。与配体结合后通过激活所偶联的G蛋白,启动不同的信号转导通路并导致各种生物效应。应用学科生物化学与分子生

G蛋白耦联型受体简介

G蛋白耦联型受体为7次跨膜蛋白,因此亦有人将此类受体称为七次跨膜受体。受体本身不具备通道结构,也无酶活性,它是通过与脂质双层中以及膜内侧存在的包括G蛋白等一系列信号蛋白质分子之间级联式的复杂的相互作用来完成信号跨膜转导的,因此也称促代谢型受体。G蛋白耦联型受体包括多种神经递质、肽类激素和趋化因子的受

小G蛋白的功能特点

小G蛋白的共同特点是,当结合了GTP时即成为活化形式,这时可作用于下游分子使之活化,而当GTP水解成为GDP时(自身为GTP酶)则恢复到非活化状态。这一点与Gα类似,但是小G蛋白的分子量明显低于Gα。在细胞中存在着一些专门控制小G蛋白活性的小G蛋白调节因子,有的可以增强小G蛋白的活性,如鸟苷酸交换因

G蛋白偶联受体的功能

G蛋白偶联受体(G Protein-Coupled Receptors,GPCRs)是一大类膜蛋白受体的统称。

G蛋白耦联受体的分类

A类(或第一类,视紫红质样受体)B类(或第二类,分泌素受体家族)C类(或第三类,代谢型谷氨酸受体)D类(或第四类,真菌交配信息素受体)E类(或第五类,环腺苷酸受体)F类(或第六类,Frizzled/Smoothened家族)其中第一类即视紫红质样受体包含了绝大多数种类的G蛋白耦联受体。它被进一步分为

G蛋白偶联受体的分类

根据对人的基因组进行序列分析所得的结果,人们预测出了近千种G蛋白耦联受体的基因。这些G蛋白偶联受体可以被划分为六个类型,分属其中的G蛋白耦联受体的基因序列之间没有同源关系。A类(或第一类,视紫红质样受体)B类(或第二类,分泌素受体家族)C类(或第三类,代谢型谷氨酸受体)D类(或第四类,真菌交配信息素

G蛋白偶联受体结构介绍

G蛋白偶联受体均是膜内在蛋白(Integral membrane protein),每个受体内包含七个α螺旋组成的跨膜结构域,这些结构域将受体分割为膜外N端(N-terminus),膜内C端(C-terminus),3个膜外环(Loop)和3个膜内环。受体的膜外部分经常带有糖基化修饰。膜外环上包含有

关于G蛋白的分类介绍

  G蛋白的种类已多达40余种,大多数存在于细胞膜上,由α、β、γ三个不同亚单位构成,总分子量为100kDa左右。其中β亚单位在多数G蛋白中都非常类似,分子量36kDa左右。γ亚单位分子量在8-11kDa之间。Gα蛋白分为Gs、Gi、Go、Gq、G12、G13等六类。这些不同类型的G蛋白在信号传递过

世界最强X射线激光破解细胞信号传导密码

   中科院上海药物研究所徐华强研究员领衔的国际交叉团队经过联合攻关,成功解析了磷酸化视紫红质(Rhodopsin)与阻遏蛋白(Arrestin)复合物的晶体结构,并破解了负责关闭GPCR传导信号的磷酸化密码。7月27日,相关研究成果以封面文章发表于《细胞》杂志。  生命的功能是依靠信号传导密码来体

世界最强X射线激光破解细胞信号传导密码

  中科院上海药物研究所徐华强研究员领衔的国际交叉团队经过联合攻关,成功解析了磷酸化视紫红质(Rhodopsin)与阻遏蛋白(Arrestin)复合物的晶体结构,并破解了负责关闭GPCR传导信号的磷酸化密码。7月27日,相关研究成果以封面文章发表于《细胞》杂志。   生命的功能是依靠信号传导密码来

新研究解开长达30年之久的蠕虫嗅觉之谜

对于主要依靠嗅觉生存的土壤线虫,闻不闻得到是一个生死攸关的问题。但是,这些线虫是如何区分一千多种不同气味的,这一问题困扰了科学家几十年。多伦多大学Temerty医学院生物分子研究中心的Derek van der Kooy教授团队的研究人员发现了这一过程背后的分子机制,还有助于解释我们的大脑是如何工作

5羟色胺家族部分受体的配体识别和G蛋白选择调控机制

  G蛋白偶联受体(GPCRs)是真核生物中最大的一类膜蛋白,在感知胞外信号和介导胞内信息转导中发挥了重要作用,并参与调控多种生理过程,与人类疾病密切相关,是重要的药物靶标蛋白家族。GPCR与第二信使环磷酸腺苷相关的信号通路中,主要通过刺激型G蛋白(Gs)和抑制型G蛋白(Gi)来区分细胞内不同的信号

我国学者发现G蛋白调控水稻品质和产量的全新分子机制

   长期以来我国水稻育种的主要目的是提高产量,但是随着人们生活水平不断提高,对稻米品质也提出了更高的要求。然而,高产水稻品种的品质往往相对较差,而优质水稻的产量也往往相对较低。如何解决“高产不优质,优质不高产”的矛盾一直是水稻育种面临的难题。图: lgy3和dep1-1位点聚合后同时提高水稻产量和

我国科学家发现骨钙素在中枢神经系统中的内在调控机制

  骨源性激素骨钙素(OCN)对大脑发育和神经功能至关重要,但OCN在中枢神经系统(CNS)中的调控机制仍不清楚。近日,我国科学家团队在《Science Advances》发表题为“Osteocalcin attenuates oligodendrocyte differentiation and

我国科学家发现骨钙素在中枢神经系统中的内在调控机制

  骨源性激素骨钙素(OCN)对大脑发育和神经功能至关重要,但OCN在中枢神经系统(CNS)中的调控机制仍不清楚。近日,我国科学家团队在《Science Advances》发表题为“Osteocalcin attenuates oligodendrocyte differentiation and

吃鱼为什么会变聪明?科学家告诉你

原文地址:http://news.sciencenet.cn/htmlnews/2023/3/495143.shtm“多吃点鱼,长大后变聪明!” 小时候的你,是不是经常听家里长辈这样的“劝导”?在人类的生长发育中,需要大量的营养物质,有的能在体内合成,而有的则需要体外补给。Omega-3脂肪酸就是一

上科大发ACS:亲和质谱从草药中筛选抑制食欲活性组分

   2020年2月26日,上海科技大学iHuman研究所、生命科学与技术学院的水雯箐课题组在ACS Central Science(2018影响因子:12.837)上发表文章,使用GPCR配体筛选亲和质谱技术,从传统草本植物中发现靶向药物受体的新型激动剂,预期或与FDA批准上市减肥药氯色卡林有类似

G蛋白的读取和传递方式

一般情况下,信号分子与细胞表面的受体结合,然后,由以G蛋白为核心的信号传递系统把信息从胞外传递到胞内。G蛋白系统是细胞中最常见的信号传递方式。细胞中存在数以千计的特异性G蛋白偶联受体:有些识别激素,改变新陈代谢的水平;有些在神经系统中传递神经信号。我们的视觉依赖于一种光敏G蛋白系统;而我们的嗅觉则由

G蛋白偶联受体的主要分类

根据对人的基因组进行序列分析所得的结果,人们预测出了近千种G蛋白耦联受体的基因。这些G蛋白偶联受体可以被划分为六个类型,分属其中的G蛋白耦联受体的基因序列之间没有同源关系。A类(或第一类,视紫红质样受体)B类(或第二类,分泌素受体家族)C类(或第三类,代谢型谷氨酸受体)D类(或第四类,真菌交配信息素

G蛋白耦联型受体的组成

受体受体在结构上均为单体蛋白,由约300~400个氨基酸残基组成,有一个由30-50个氨基酸组成的细胞外N-末端,接着在肽链中出现7个α螺旋的跨膜结构,每个疏水跨膜区段由20~25个氨基酸组成,但各区段之间由数目不等的氨基酸组成的环状结构连接,其中1-2,3-4,5-6环在胞内侧,2-3,4-5,6

G蛋白的功能和途径介绍

G蛋白是指能与鸟苷二磷酸结合,具有GTP水解酶活性的一类信号传导蛋白。G蛋白参与的信号转导途径在动植物体中是一种非常保守的跨膜信号转导机制。当细胞转导胞外信号时,首先由不同类型的G蛋白偶联受体(GPCRs)接受细胞外各种配基(胞外第一信使)。然后受体被活化,进一步激活质膜内侧的异三聚体G蛋白,后者再

小G蛋白的调节功能介绍

  小G蛋白:近年来研究发现小G蛋白,特别是一些原癌基因表达产物有着广泛的调节功能。Ras蛋白主要参与细胞增殖和信号转导;Rho蛋白对细胞骨架网络的构成发挥调节作用;Rab蛋白则参与调控细胞内膜交通(membrane traffic)。此外,Rho和Rab亚家庭可能分别参与淋巴细胞极化(polari

关于小G蛋白的相关介绍

  小G蛋白(Small G Protein)因分子量只有20~30KD而得名,同样具有GTP酶活性,在多种细胞反应中具有开关作用。第一个被发现的小G蛋白是Ras,它是ras基因的产物。其它的还有Rho、SEC4、YPT1等,微管蛋白β亚基也是一种小G蛋白。  小G蛋白的共同特点是,当结合了GTP时

什么是G蛋白耦联型受体?

G蛋白耦联型受体是指受体和酶或离子通道之间的相互作用通过一种结合GTP的调节蛋白介导完成的。配体与受体结合后通过G蛋白间接作用于酶或离子通道,从而调节细胞的生理活动。