成都生物所研究获得异养硝化好氧反硝化细菌
传统的氨氮废水处理是通过自养硝化菌的硝化作用与异养反硝化菌的反硝化作用的组合工艺使氨氮转化为氮气,工艺冗长,能耗大,不仅增加了运行费用,还增加了运行管理和后续处理的难度。 11月5日,中科院成都生物所“一株异养硝化好氧反硝化细菌及其培养方法和用途”获国家知识产权局发明ZL。该所科研人员通过研究获得一株高效的异养硝化好氧反硝化细菌,经鉴定为恶臭假单胞菌种,该菌种能够有效脱除水体中的氨氮、亚硝酸氮、硝酸氮及其混合物,还可同时去除有机废水中的CODCr,适用于高浓度有机含氮废水、无机含氮废水的处理,脱氮过程中,不产生亚硝酸盐和硝酸盐的积累。 用该菌株处理废水工艺简单,脱氮效果稳定。 ......阅读全文
生物脱氮法
生物脱氮法微生物去除氨氮过程需经两个阶段。一阶段为硝化过程,亚硝化菌和硝化菌在有氧条件下将氨态氮转化为亚硝态氮和硝态氮的过程。第二阶段为反硝化过程,污水中的硝态氮和亚硝态氮在无氧或低氧条件下,被反硝化菌(异养、自养微生物均有发现且种类很多)还原转化为氮气。在此过程中,有机物(甲醇、乙酸、葡萄糖等)作
生物脱氮法
氨氮废水处理技术分析(二) 生物脱氮法 微生物去除氨氮过程需经两个阶段。 一阶段为硝化过程,亚硝化菌和硝化菌在有氧条件下将氨态氮转化为亚硝态氮和硝态氮的过程。 第二阶段为反硝化过程,污水中的硝态氮和亚硝态氮在无氧或低氧条件下,被反硝化菌(异养、自养微生物均有发现且种类很多
脱氮作用的概念
硝化者亚硝化毛杆菌和硝化杆菌的活动结果所产生的硝酸,可以被高等植物吸取和进一步代谢掉,此外,然而,硝酸可以转变威氮气或氧化氮,或者两种气体的混和物,这一过程叫脱氮作用.气体回到大气中故脱氮作用代表消耗土壤氮的一种机理。
脱氮作用的机理
微生物和植物吸收利用硝酸盐有两种完全不同的用途,一是利用其中的氮作为氮源,称为同化性硝酸还原作用:NO3-→NH4+→有机态氮。许多细菌、放线菌和霉菌能利用硝酸盐做为氮素营养。另一用途是利用NO2-和NO3-为呼吸作用的最终电子受体,把硝酸还原成氮(N2),称为反硝化作用或脱氮作用:NO3-→NO2
脱氮作用的特点
脱氮有机体的本性,是一种在产能的电子传递中能较氧更自由地利用亚硝酸或硝酸作为末端受氢体的细菌,在无氧条件下,脱氮作用发生得最迅速,这个过程被氧所抑制,因为这个气体作为末端电子受体有效地与亚硝酸或硝酸竞争。脱氮作用的第一步包含硝酸到亚硝酸的还原,这个反应涉及的酶叫作呼吸的硝酸还原酶,与同化的硝酸还原酶
脱氮作用的特点
脱氮有机体的本性,是一种在产能的电子传递中能较氧更自由地利用亚硝酸或硝酸作为末端受氢体的细菌,在无氧条件下,脱氮作用发生得最迅速,这个过程被氧所抑制,因为这个气体作为末端电子受体有效地与亚硝酸或硝酸竞争。脱氮作用的第一步包含硝酸到亚硝酸的还原,这个反应涉及的酶叫作呼吸的硝酸还原酶,与同化的硝酸还原酶
氨氮吹脱塔处理氨氮废水
对氨氮废水处理的方法涉及生物法、物化法的各种处理工艺,如生物方法有硝化及藻类养殖;物理方法有反渗透、蒸馏、土壤灌溉;化学法有离子交换法、氨吹脱、化学沉淀法、折点氯化、电化学处理等,因此氨氮吹脱塔在渐渐广泛使用。 吹脱法用于脱出水中氨氮,即将气体通入水中,使气液相互充分接触,使水中溶解的游离氨
氨氮吹脱塔处理氨氮废水
对氨氮废水处理的方法涉及生物法、物化法的各种处理工艺,如生物方法有硝化及藻类养殖;物理方法有反渗透、蒸馏、土壤灌溉;化学法有离子交换法、氨吹脱、化学沉淀法、折点氯化、电化学处理等,因此氨氮吹脱塔在渐渐广泛使用。 吹脱法用于脱出水中氨氮,即将气体通入水中,使气液相互充分接触,使水中溶解的游离氨
脱氮作用的作用机理
即为反硝化作用微生物和植物吸收利用硝酸盐有两种完全不同的用途,一是利用其中的氮作为氮源,称为同化性硝酸还原作用:NO3-→NH4+→有机态氮。许多细菌、放线菌和霉菌能利用硝酸盐做为氮素营养。另一用途是利用NO2-和NO3-为呼吸作用的最终电子受体,把硝酸还原成氮(N2),称为反硝化作用或脱氮作用:N
关于脱氮作用的特点介绍
脱氮有机体的本性,是一种在产能的电子传递中能较氧更自由地利用亚硝酸或硝酸作为末端受氢体的细菌,在无氧条件下,脱氮作用发生得最迅速,这个过程被氧所抑制,因为这个气体作为末端电子受体有效地与亚硝酸或硝酸竞争。 脱氮作用的第一步包含硝酸到亚硝酸的还原,这个反应涉及的酶叫作呼吸的硝酸还原酶,与同化的硝
简述脱氮硫杆菌的特性
脱氮硫杆菌是严格自养菌,只能利用无机碳源(如碳酸根离子、碳酸氢根离子)进行生长代谢。有研究表明,脱氮硫杆菌是通过卡尔文循环途径固定二氧化碳,其胞内含有卡尔文循环的两种关键酶——1,5-二磷酸核酮糖羧化酶和5-磷酸核酮糖激酶。 脱氮硫杆菌能够利用的氮源范围很广,可以是氨盐、硝酸盐、亚硝酸盐以及氨
关于脱氮作用的基本介绍
硝化者亚硝化毛杆菌和硝化杆菌的活动结果所产生的硝酸,可以被高等植物吸取和进一步代谢掉,此外,然而,硝酸可以转变威氮气或氧化氮,或者两种气体的混和物,这一过程叫脱氮作用.气体回到大气中故脱氮作用代表消耗土壤氮的一种机理。
关于脱氮硫杆菌的简介
脱氮硫杆菌(Thiobacillus denitrificans)是专性无机化能自养型细菌,在氧化硫化物的过程获得能量,并以硝酸盐为电子受体生成氮气,故此,这是一类在废水同步脱硫反硝化处理工艺中的主要功能微生物。
关于脱氮作用的机理介绍
即为反硝化作用 微生物和植物吸收利用硝酸盐有两种完全不同的用途,一是利用其中的氮作为氮源,称为同化性硝酸还原作用:NO3-→NH4+→有机态氮。许多细菌、放线菌和霉菌能利用硝酸盐做为氮素营养。另一用途是利用NO2-和NO3-为呼吸作用的最终电子受体,把硝酸还原成氮(N2),称为反硝化作用或脱氮
氨氮吹脱法的原理
其具体原理是利用废水中所含的氨氮等挥发性物质的实际浓度与平衡浓度之间存在的差异,在碱性条件下使用空气吹脱,由于在吹脱过程中不断排出气体,改变了气相中的氨气浓度,从而使其实际浓度始终小于该条件下的平衡浓度,最终使废水中溶解的氨不断穿过气液界面,使废水中的NH3-N得以脱除,常以空气作为载体。氨吹脱
关于-脱氮作用的影响介绍
反硝化作用使硝酸盐还原成氮气,从而降低了土壤中氮素营养的含量,对农业生产不利。农业上常进行中耕松土,以防止反硝化作用。反硝化作用是氮素循环中不可缺少的环节,可使土壤中因淋溶而流入河流、海洋中的NO3-减少,消除因硝酸积累对生物的毒害作用。
氨氮吹脱法的优缺点
优点 吹脱法用于处理高浓度氨氮废水具有流程简单、处理效果稳定、基建费和运行费较低等优点,实用性较强。 缺点 进出水需要调整PH、如果没有酸性吸收吹脱出来的氨气随空气进入大气引起二次污染、硬度高的废水结垢严重。
关于脱氮硫杆菌的分布介绍
脱氮硫杆菌分布很广,可在10~37℃,pH为4.0~9.5的条件下生长,最适生长温度为28~30℃,最适pH 6.5~7.0。脱氮硫杆菌对高盐度环境的适应性不强,如当硫酸根离子浓度超过250mM时,由于总离子强度的升高其生长将受到抑制。
成都生物所开发出氨氮废水自养脱氮新技术
工艺示意图 氨氮废水污染日益备受关注,国家已将其列入“十二五”约束性排放指标。在传统的氨氮废水(尤其是低C/N氨氮废水)处理过程中,需要添加额外有机碳(如甲酸盐、乙酸盐等)才能实现完全脱氮效果,这不仅增加了处理的成本,而且容易引起有机物的二次污染。为了克服此缺陷,针对近年来
氮吸附脱附测出来吸附孔径分布与脱附为什么不同
氮吸附脱附测出来的吸附孔径分布与脱附孔径分布为什么有很大的不同?哪个更能真实的表征孔?吸附和脱附是有很大不同的,吸附时发生的是物理吸附和化学吸附,脱附时只可将物理吸附时的物质脱附下来,而化学吸附由于化学键力的存在很难被脱附!在所测试出来的吸附和脱附曲线上的表现是其吸附和脱附曲线并不可能完全的重合,吸
A/O内循环生物脱氮工艺特点
(1)效率高。该工艺对废水中的有机物,氨氮等均有较高的去除效果。当总停留时间大于54h,经生物脱氮后的出水再经过混凝沉淀,可将COD值降至100mg/L以下,其他指标也达到排放标准,总氮去除率在70%以上。(2)流程简单,投资省,操作费用低。该工艺是以废水中的有机物作为反硝化的碳源,故不需要再另加甲
吹脱塔处理高浓度氨氮废水
在实际工程中大多采用吹脱塔。吹脱塔的构造采用气液接触装置,在塔的内部填充填料,用以提高接触面积。调节pH值后的水从塔的上部淋洒到填料上而形成水滴,顺着填料的间隙次第落下,与由风机从塔底向上吹送的空气逆流接触,完成传质过程,使氨由液相转为气相,随空气排放,完成吹脱过程,脱除率达75%以上。低浓度废水
物理化学脱氮有哪些方法
(1)原理NH3+H2ONH4++OH-pH=7时,以NH4+存在;pH=11时,90%NH3存在pH升高,去除NH3上升T上升,去除NH3上升4、脱氮塔脱氮塔技术的特点:除氮的效果稳定,操作简便,容易控制;NH3二次污染(可回收),使用CaO易结垢(改用NaOH);水温下降时,效果差。5、脱氮塔工
吹脱塔处理高浓度氨氮废水
氨氮处理系统通过将氨氮吹脱和吸收塔净化等多项技术组合起来,处理不同浓度的氨氮废水,可以将10000mg/L以上的氨氮废水处理到排放要求。处理后的氨氮浓度在15mg/L以下。是一种能够兼顾流程简单、投资省、技术成熟、控制方便以及无二次污染等特点的氨氮处理系统。传统氨氮吹脱出来的氨气随空气进入大气,仍然
科研人员诱变筛选出高效脱氮菌种
原文地址:http://news.sciencenet.cn/htmlnews/2023/7/505576.shtm近日,农业农村部环境保护科研监测所乡村环境建设创新团队成功诱变筛选出高效异养硝化—好氧反硝化突变菌。该研究为生活污水脱氮治理提供了新的菌种资源和筛选方法。相关研究成果发表在《生物资源技
氨氮吹脱法检测影响因素有哪些?
氨氮吹脱法检测影响因素有哪些?氨氮吹脱法一般采用吹脱池(也称“曝气池”)和吹脱塔两类设备。但吹脱池占地面积大,而且易污染周围环境,所以有毒/气体的吹脱都采用塔式设备。塔式设备中填料吹脱塔主要特征是在塔内装置一定高度的填料层,使具有大表面积的填充塔来达到气—液间充分接触。常用填料有纸质蜂窝、拉西环、聚
高浓度氨氮废水处理方法之新型生物脱氮法
近年来国内外出现了一些全新的脱氮工艺,为高浓度氨氮废水的脱氮处理提供了新的途径。主要有短程硝化反硝化、好氧反硝化和厌氧氨氧化。 一、短程硝化反硝化 生物硝化反硝化是应用zui广泛的脱氮方式。由于氨氮氧化过程中需要大量的氧气,曝气费用成为这种脱氮方式的主要开支。短程硝化反硝化(将氨氮氧化至亚硝
五大MBR组合工艺-解决脱氮除磷
由于目前污水排放标准普遍提高了对脱氮除磷的要求,几乎所有的传统脱氮除磷工艺都被应用到了MBR工艺中,如AO、A2O、SBR等,这些传统工艺中遇到的技术问题同样会在MBR脱氮除磷工艺中出现,但MBR工艺的一些自身特性可以对原有的脱氮除磷工艺起到强化作用,A2O及其变形强化工艺是众多应用在MBR脱氮除磷
同步脱氮除磷工艺矛盾关系及对策(三)
化和反硝化是生物除磷脱氮系统密不可分的两个过程。硝化不充分, 出水氨氮必然升高, 反硝化能力也发挥不出来; 反硝化不充分出水硝酸盐就会上升。怎样配置恰当的硝化和反硝化容量, 充分发挥它们的潜力, 是脱氮除磷工艺设计和运行的一个重要问题。pH做为基本的污水指标,势必成为供求的热点,这对广大的E-131
五大MBR组合工艺-解决脱氮除磷
由于目前污水排放标准普遍提高了对脱氮除磷的要求,几乎所有的传统脱氮除磷工艺都被应用到了MBR工艺中,如AO、A2O、SBR等,这些传统工艺中遇到的技术问题同样会在MBR脱氮除磷工艺中出现,但MBR工艺的一些自身特性可以对原有的脱氮除磷工艺起到强化作用,A2O及其变形强化工艺是众多应用在MBR脱氮