核磁共振成像性能原理
从宏观上看,作进动的磁矩集合中,相位是随机的。它们的合成取向就形成宏观磁化,以磁矩M表示。就是这个宏观磁矩在接收线圈中产生核磁共振信号。在大量氢核中,约有一半略多一点处于低等状态。可以证明,处于两种基本能量状态核子之间存在动态平衡,平衡状态由磁场和温度决定。当从较低能量状态向较高能量状态跃迁的核子数等于从较高能量状态到较低能量状态的核子数时,就达到“热平衡”。如果向磁矩施加符合拉莫尔频率的射频能量,而这个能量等于较高和较低两种基本能量状态间磁场能量的差值,就能使磁矩从能量较低的“平行”状态跳到能量较高“反向平行”状态,就发生共振。 由于向磁矩施加拉莫频率的能量能使磁矩发生共振,那么使用一个振幅为B1,而且与作进动的自旋同步(共振)的射频场,当射频磁场B1的作用方向与主磁场B0垂直,可使磁化向量M偏离静止位置作螺旋运动,或称章动,即经射频场的力迫使宏观磁化向量环绕它作进动。如果各持续时间能使宏观磁化向量旋转90º角,他就落在......阅读全文
核磁共振成像性能原理
从宏观上看,作进动的磁矩集合中,相位是随机的。它们的合成取向就形成宏观磁化,以磁矩M表示。就是这个宏观磁矩在接收线圈中产生核磁共振信号。在大量氢核中,约有一半略多一点处于低等状态。可以证明,处于两种基本能量状态核子之间存在动态平衡,平衡状态由磁场和温度决定。当从较低能量状态向较高能量状态跃迁的核
核磁共振成像原理概述
氢核是人体成像的首选核种:人体各种组织含有大量的水和碳氢化合物,所以氢核的核磁共振灵活度高、信号强,这是人们首选氢核作为人体成像元素的原因。NMR信号强度与样品中氢核密度有关,人体中各种组织间含水比例不同,即含氢核数的多少不同,则NMR信号强度有差异,利用这种差异作为特征量,把各种组织分开,这就
核磁共振成像的原理简介
原子核自旋,有角动量。由于核带电荷,它们的自旋就产生磁矩。当原子核置于静磁场中,本来是随机取向的双极磁体受磁场力的作用,与磁场作同一取向。以质子即氢的主要同位素为例,它只能有两种基本状态:取向“平行”和“反向平行”,他们分别对应于低能和高能状态。精确分析证明,自旋并不完全与磁场趋向一致,而是倾斜
核磁共振成像特点
一、无损伤性检查。CT、X线、核医学等检查,病人都要受到电离辐射的危害,而MRI投入临床20多年来,已证实对人体没有明确损害。孕妇可以进行MRI检查而不能进行CT检查。二、多种图像类型。CT、X线只有一种图像类型,即X线吸收率成像。而MRI常用的图像类型就有近10种,且理论上有无限多种图像类型。通过
核磁共振成像简介
核磁共振成像(英语:Nuclear Magnetic Resonance Imaging,简称NMRI),又称自旋成像(英语:spin imaging),也称磁共振成像(Magnetic Resonance Imaging,简称MRI),是利用核磁共振(nuclear magnetic reso
何谓核磁共振成像技术
核磁共振成像技术(即MRI)是近十几年来发展起来的一项新技术。它无须借助X 射线,对人体免除了辐射危害。其成像清晰度极高,在不向椎管内注射造影剂的情况下,就可以达到近乎脊髓造影的分辨程度。较之计算机断层扫描和脊髓造影,核磁共振成像技术对于软组织的显影能力要更胜一筹,它可以直接观察脊髓和髓核组织、纤维
核磁共振成像发展历史
核磁共振成像术,简称核磁共振、磁共振或核磁,是80年代发展起来的一种全新的影像检查技术。它的全称是:核磁共振电子计算机断层扫描术(简称MRl)是利用核磁共振成像技术进行医学诊断的一种新颖的医学影像技术。核磁共振是一种物理现象,早在1946年就被美国的布劳克和相塞尔等人分别发现,作为一种分析手段广泛应
核磁共振成像(mri)的概述
核磁共振成像是近年来一种新型的高科技影像学检查方法,是80年代初才应用于临床的医学影像诊断新技术。它具有无电离辐射性(放射线)损害;无骨性伪影;能多方向(横断、冠状、矢状切面等)和多参数成像;高度的软组织分辨能力;无需使用对比剂即可显示血管结构等独特的优点。
什么是核磁共振成像术
核磁共振成像术,是一种揭示人体“超原子结构(质子)”相互作用的“化学图像”的技术。要了解这一技术,就需要知道什么是核磁共振现象。我们知道,任何原子,如果它的原子核结构中,质子或中子的数目是奇数,或两者都是奇数时,这些原子的原子核,就具有带电和环绕一定方向的自旋轴自旋的特性。这样,原子核周围就存在着一
核磁共振成像可观察基因表达
基因就如同开关一样,知道哪些基因开启,对于疾病的治疗和监控至关重要。美国加州理工学院研究人员23日在《自然·通讯》杂志线上版发表论文称,他们开发出一种新方法,使用常见的核磁共振成像(MRI)技术,即可观察到体内细胞的基因表达情况。 在MRI过程中,体内氢原子(大多包含在水分子和脂肪中)被电磁
核磁共振成像技术步入分子层面
美国和加拿大科学家分别采用新型核磁共振成像(MRI)技术观测到人体内的分子变化,从而大大提高了MRI扫描的速度和精度,可在未来用于更快地检测癌症等疾病。研究发表在最新一期《科学》杂志上。 两国科学家使用的MRI技术都通过操控分子的旋转来提高扫描的速度和精度,从而可以在分子层面快速地完成诸如
核磁共振成像主磁体的分类
主磁体分三类:普通电磁体、永磁体和超导磁体。普通电磁体是利用较强的直流电流通过线圈产生磁场。维持一个主磁体磁场的耗电约为100kW。一般需要通电数小时后,磁场才能达到稳定状态。线圈中流过大电流将产生大量热,要通过热交换器以冷却水散热。永磁材料经外部激励电源一次充磁后,去掉激励电源仍长期保持及磁性
对核磁共振成像的未来展望
人脑是如何思维的,一直是个谜。而且是科学家们关注的重要课题。而利用MRI的脑功能成像则有助于我们在活体和整体水平上研究人的思维。其中,关于盲童的手能否代替眼睛的研究,是一个很好的样本。正常人能见到蓝天碧水,然后在大脑里构成图像,形成意境,而从未见过世界的盲童,用手也能摸文字,文字告诉他大千世界,
低场核磁共振成像仪
低场核磁共振成像仪是一种用于食品科学技术领域的分析仪器,于2018年12月2日启用。 技术指标 NMI20系列核磁共振成像分析仪,集弛豫分析和磁共振成像于一体,探头内径达40mm,以满足不同大小样品的测试需求,目前已广泛应用于食品研究。NMI20系列核磁共振设备采用稀土永磁体制造,无后续维护
简介核磁共振成像弛豫过程
用梯度磁场对共振信号作空间编码(定位)的办法得到的图像,实质上是人体组织内质子的密度图。磁共振象素值反映的横向磁化不但与质子数量有关,而且与它们的运动特性,即所谓“弛豫时间”有关。 在自由进动阶段,磁化向量经过一个称为“弛豫”的过程,回到它的原始静止位置。弛豫过程的特性由时间常数T1和T2描述
管道过滤器性能原理
原水由进水流进入全自动管道过滤器体内,由出水口排出过滤后的干净的水,在这一进一出当中,过滤器内部在进行着快速有序的运作,原水有进水口进入,首先经过粗滤网拦截大颗粒杂质和菌藻类,再向细滤网流去,细滤网拦截细小杂质等,在这期间,水不断的进入,杂质堆积越来越多,致使滤网内外两侧形成压力差,当这个压力差
核磁共振成像(mri)的临床意义
适应症: (1) 神经系统的病变包括肿瘤、梗塞、出血、变性、先天畸形、感染等几乎成为确诊的手段。 (2) 特别是脊髓脊椎的病变如脊椎的肿瘤、萎缩、变性、外伤椎间盘病变,成为首选的检查方法。 (3) 心脏大血管的病变;肺内纵膈的病变。 (4) 腹部盆腔脏器的检查;胆道系统、泌尿系统等明显优
核磁共振成像(mri)的注意事项
不能检查的人群:怀孕3个月以内的孕妇、体内有磁铁类物质者,如装有心脏起搏器、动脉瘤等血管手术后,人工瓣膜,重要器官旁有金属异物残留的人群。 检查前: (1) 要向技术人员说明以下情况:① 有无手术史;② 有无任何金属或磁性物质植入体内包括金属节育环等;③ 有无假牙、电子耳、义眼等;④ 有无药
核磁共振成像磁体部分组成概述
磁体主要有主磁体(产生强大的静磁场)、补偿线圈(校正线圈)、射频线圈和梯度线圈组成。 主磁体用以提供强大的静磁场,而且要求较大的空间范围(能容纳病人),保持高度均匀的磁场强度。衡量磁体的性能有四条标准:磁场强度、时间稳定性、均匀性、孔道尺寸。增加静磁场强度可使检测灵敏度提高,即扫描时间缩短和空
关于核磁共振成像技术的优点介绍
核磁共振成像技术的最大优点是能够在对身体没有损害的前提下,快速地获得患者身体内部结构的高精确度立体图像。利用这种技术,可以诊断以前无法诊断的疾病,特别是脑和脊髓部位的病变;可以为患者需要手术的部位准确定位,特别是脑手术更离不开这种定位手段;可以更准确地跟踪患者体内的癌变情况,为更好地治疗癌症奠定
低场核磁共振成像与分析系统
低场核磁共振成像与分析系统是一种用于化学、物理学、药学领域的科学仪器,于2015年1月4日启用。 技术指标 1.磁体类型:永磁体(样品腔竖直放置);2.磁场强度:0.5±0.05T;3.磁场均匀度:≤30ppm(30mm×30mm×35mm);4.磁场稳定性:≤300Hz/Hour;5.磁体
核磁共振成像仪的技术应用
NMR技术即核磁共振谱技术,是将核磁共振现象应用于分子结构测定的一项技术。对于有机分子结构测定来说,核磁共振谱扮演了非常重要的角色,核磁共振谱与紫外光谱、红外光谱和质谱一起被有机化学家们称为“四大名谱”。目前对核磁共振谱的研究主要集中在1H和13C两类原子核的图谱。核磁共振的特点:①共振频率决定于核
耐寒性能试验仪工作原理
超低温耐寒性能试验仪采用进口全封闭压缩机作为低温制冷源,替代传统的二氧化碳干冰冷剂作为冷浴的冷却手段,根据GB8948,8949-88(人造革),GB6668-86(聚氯乙烯针织布基发泡人造革)和纺织部《涂层织物耐低温试验方法-低温冲击仪法》,并参照BS3424:8-1983涂层织物试验方法-冷裂温
热防护性能的测试方法原理
原理将试样水平放置并暴露于对流辐射组合热源,暴露的总热通量为(84±2) kW/m2 [(2.00±0.05)cal/cm2?s]。使用铜量热传感器测量并记录试样的温度随时间变化情况,结合铜的热学性能参数将温度变化情况换算为透过试样传递的热能,得到热能随时间变化的传热反应曲线。可采取以下两种测试方法
核磁共振成像(mri)的相关疾病有哪些
基底核钙化症,迟发性运动障碍,投掷运动,书写痉挛,肌张力障碍综合征,副肿瘤性脊髓病,神经系统先天性疾病,克拉伯病,夏伊-德雷格综合征,纹状体黑质变性
核磁共振成像技术实验仪的功能
核磁共振成像技术实验仪功能更强大,可开设更多教学内容的核磁共振教学仪器,可满足近代物理、医学影像、生物医学工程等不同的实验要求。MRIjx-Advance型磁共振成像教学实验仪不仅可用于教学,还可以用于科研做为大学生、研究生进行拓展性实验的平台。 一、核磁共振成像技术实验仪两大特点:开放性
覆膜砂结壳性能测试仪性能及工作原理
覆膜设备对覆膜砂强度的影响由于各种覆膜设备的加热和搅拌形式不一样,型砂混合料在覆膜设备中的运动状态和覆膜效率也不尽相同,混制覆膜砂的性能(强度)也将有所差别。 本试验是采用国内现有的4种试验室用覆膜砂混砂机在相同的混砂工艺、配方和原材料的条件下,分别混制覆膜砂、测定其强度并对覆膜效果进行了
减压阀的性能原理以及优点
性能 (1)调压范围:它是指减压阀输出压力P2的可调范围,在此范围内要求达到规定的精度。调压范围主要与调压弹簧的刚度有关。 (2)压力特性:它是指流量g为定值时,因输入压力波动而引起输出压力波动的特性。输出压力波动越小,减压阀的特性越好。输出压力必须低于输入压力—定值才基本上不随输入
雷磁浊度计的性能原理
浊度计是测定水浊度的装置。有散射光式、透射光式和透射散射光式等,统称光学式浊度计。浊度计原理为,当光线照射到液面上,入射光强、透射光强、散射光强相互之间比值和水样浊度之间存在一定的相关关系,通过测定透射光强、散射光强和入射光强或透射光强与散射光强的比值来测定水样的浊度。光学式浊度计有用于实验室的,也
电动试压泵的性能特点和工作原理
性能特点 试压泵具有结构紧凑、合理、操作省力、整机重量轻、维修方便、防锈、3DSY系列电压试压泵采用电机驱动,大大地提高工作效率等特点。 工作原理 1.检查水箱中水位,连接电源线。 2.顺时针拧紧手轮开关。 3.按启动按钮,电机工作,当压力表指针达到调定的额定压力时,压力不会上去。